por MERLAYNE » Qua Mar 28, 2012 21:11
11 – (Unesp – SP) Considere os pacientes da Aids classificados em três grupos de risco: homofílicos, homossexuais e toxicômanos. Num certo país, de 75 pacientes, verificou – se:
- 41 são homossexuais;
- 9 são homossexuais e hemofílicos, e não são toxicômanos ;
- 7 são homossexuais e toxicômanos, e não são hemofílicos;
- 2 são hemofílicos e toxicômanos, e não são homossexuais;
- 6 pertecem apenas ao grupo de risco dos toxicômanos;
- o número de pacientes que são apenas hemofílicos é igual ao número de pacientes que são apenas homossexuais;
- o número de pacientes que pertencem simultaneamente aos três gruposde risco é a metade do número de pacientes que não pertencem a nenhum dos grupos de risco.
Quantos pacientes pertencem simultaneamente aos três grupos de risco?
-
MERLAYNE
- Usuário Dedicado

-
- Mensagens: 29
- Registrado em: Qua Mar 28, 2012 19:02
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por MERLAYNE » Qua Mar 28, 2012 22:06
por que 25-x? e como você descobriu que x é 1?
Editado pela última vez por
MERLAYNE em Qua Mar 28, 2012 22:08, em um total de 1 vez.
-
MERLAYNE
- Usuário Dedicado

-
- Mensagens: 29
- Registrado em: Qua Mar 28, 2012 19:02
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por MERLAYNE » Qua Mar 28, 2012 22:07
ednaldo1982 escreveu:
por que 25-x?
-
MERLAYNE
- Usuário Dedicado

-
- Mensagens: 29
- Registrado em: Qua Mar 28, 2012 19:02
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por fraol » Qua Mar 28, 2012 22:13
Penso que a figura, com as informações dadas no problema é algo assim:

- conjuntos
Como o número de homossexuais é 41, então:

.
Como o número de pacientes que pertencem simultaneamente aos três grupos de risco é a metade do número de pacientes que não pertencem a nenhum dos grupos de risco, então:

.
Somando, membro a membro, as duas expressões obtemos:

que é a resposta procurada.
-
fraol
- Colaborador Voluntário

-
- Mensagens: 392
- Registrado em: Dom Dez 11, 2011 20:08
- Localização: Mogi das Cruzes-SP
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: formado
por MERLAYNE » Qui Mar 29, 2012 00:14
muito obrigada!
-
MERLAYNE
- Usuário Dedicado

-
- Mensagens: 29
- Registrado em: Qua Mar 28, 2012 19:02
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por ednaldo1982 » Qui Mar 29, 2012 01:30
fraol escreveu:Penso que a figura, com as informações dadas no problema é algo assim:
conj.png
Como o número de homossexuais é 41, então:

.
Como o número de pacientes que pertencem simultaneamente aos três grupos de risco é a metade do número de pacientes que não pertencem a nenhum dos grupos de risco, então:

.
Somando, membro a membro, as duas expressões obtemos:

que é a resposta procurada.
Pelo enunciado, o valor do seu y = 14 deve ser metade das pessoas que não são de nenhum grupo... que pelas contas de sua resolução dá 15, e 14 não é metade de 15.
-

ednaldo1982
- Usuário Dedicado

-
- Mensagens: 44
- Registrado em: Seg Mar 26, 2012 11:28
- Formação Escolar: GRADUAÇÃO
- Área/Curso: matematica
- Andamento: formado
por MERLAYNE » Qui Mar 29, 2012 01:40
O resultado é 1 só não sei como chegar a ele.
-
MERLAYNE
- Usuário Dedicado

-
- Mensagens: 29
- Registrado em: Qua Mar 28, 2012 19:02
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por ednaldo1982 » Qui Mar 29, 2012 01:53
MERLAYNE escreveu:O resultado é 1 só não sei como chegar a ele.
observe o circulo do homo, já foi dado pelo enunciado o valor 9 e 7 que somados dá 16 que para 41 que é o total desse círculo falta 25. Se eu chamar a intersecção dos três de X então a parte que falta nesse circulo será o seu complemento, portanto 25 - X. Por exemplo, se o X for 10, o complemento é 25 - 10 = 15.
uma das informações é que esse nosso x é metade do numero de pessoas que não estão em nenhum grupo. esse valor está representado por 2X fora dos circulos porém dentro do retângulo que representa o todo que é 75.
juntando todas as partes mais os 2X tem que dar 75, daí encontramos que x = 1
-

ednaldo1982
- Usuário Dedicado

-
- Mensagens: 44
- Registrado em: Seg Mar 26, 2012 11:28
- Formação Escolar: GRADUAÇÃO
- Área/Curso: matematica
- Andamento: formado
por fraol » Qui Mar 29, 2012 09:52
Ok ednaldo1982, concordo com a sua solução.
-
fraol
- Colaborador Voluntário

-
- Mensagens: 392
- Registrado em: Dom Dez 11, 2011 20:08
- Localização: Mogi das Cruzes-SP
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: formado
por reyaniashin » Ter Fev 05, 2013 20:38
fraol escreveu:Penso que a figura, com as informações dadas no problema é algo assim:
conj.png
Como o número de homossexuais é 41, então:

.
Como o número de pacientes que pertencem simultaneamente aos três grupos de risco é a metade do número de pacientes que não pertencem a nenhum dos grupos de risco, então:

.
Somando, membro a membro, as duas expressões obtemos:

que é a resposta procurada.
Como você chegou a saber esse valor do numero de pacientes que não pertencem a nenhum dos grupos.
( "2x+6" veio da onde? )Obs.: Edinaldo sua resolução esta certa obrigado.
-
reyaniashin
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Ter Fev 05, 2013 20:25
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
Voltar para Álgebra Elementar
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Conjuntos] Confusão em teoria dos conjuntos numa questão.
por Debora Bruna » Seg Jan 11, 2016 17:44
- 1 Respostas
- 8573 Exibições
- Última mensagem por DanielFerreira

Sáb Jan 23, 2016 16:44
Conjuntos
-
- [Conjuntos] Dúvida sobre conjuntos vazios
por ALPC » Qui Set 18, 2014 18:28
- 5 Respostas
- 5995 Exibições
- Última mensagem por adauto martins

Seg Set 22, 2014 15:44
Conjuntos
-
- [conjuntos]numeros racionais e conjuntos
por fenixxx » Ter Fev 28, 2012 21:35
- 3 Respostas
- 4384 Exibições
- Última mensagem por DanielFerreira

Sex Mar 02, 2012 00:04
Álgebra Elementar
-
- [Conjuntos] Problema de conjuntos com porcentagem
por Tibes » Qui Jan 31, 2013 14:29
- 1 Respostas
- 7695 Exibições
- Última mensagem por young_jedi

Sex Fev 01, 2013 12:39
Conjuntos
-
- [Conjuntos] Conjuntos e geometria plana
por bencz » Dom Mar 03, 2013 12:58
- 3 Respostas
- 10902 Exibições
- Última mensagem por maison_souza

Sex Nov 14, 2014 13:15
Álgebra Elementar
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.