• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limite trigonométrico

Limite trigonométrico

Mensagempor jmoura » Dom Mar 25, 2012 21:25

Como calculo esse limite:
\lim_{x->0} \frac{1-cos^3(x)}{x.sen(x).cos(x)}
jmoura
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Sex Mar 23, 2012 22:50
Formação Escolar: GRADUAÇÃO
Área/Curso: Bacharelado em Física
Andamento: cursando

Re: Limite trigonométrico

Mensagempor cjunior94 » Dom Mar 25, 2012 22:36

Primeiro faça a diferença de cubo: (a-b)(a^2+ab+b^2)=a^3+b^3

\lim_{x->0}\frac{(1-cos(x))(1+cos(x)+1)}{x*sen(x)*cos(x)}

Agora basta multiplicar pelo conjugado:

\lim_{x->0}\frac{(cos(x)+2)*(1-cos(x))*(1+cos(x))}{x*sen(x)*cos(x)*(1+cos(x))}

\lim_{x->0}\frac{(cos(x)+2)*(1-cos^2(x))}{x*sen(x)*cos(x)*(1+cos(x))}

Sendo: 1-cos^2(x)=sen^2(x)

Temos:
\lim_{x->0}\frac{(cos(x)+2)*(sen^2(x))}{x*sen(x)*cos(x)*(1+cos(x))}

Organizando os temos, temos então:
\lim_{x->0}\frac{sen(x)}{x}*\frac{sen(x)}{sen(x)}*\frac{cos(x)+2}{cos(x)*(1+cos(x)}

Sabendo que o limite dos produtos é o produto dos limites, temos:

1 * 1 * \frac{3}{2} = \frac{3}{2}
cjunior94
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Dom Mar 18, 2012 11:38
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Limite trigonométrico

Mensagempor LuizAquino » Seg Mar 26, 2012 13:02

cjunior94 escreveu:Primeiro faça a diferença de cubo: (a-b)(a^2+ab+b^2)=a^3+b^3

\lim_{x->0}\frac{(1-cos(x))(1+cos(x)+1)}{x*sen(x)*cos(x)}


Aqui há dois erros.

Primeiro, o produto notável é:

(a-b)\left(a^2+ab+b^2\right)=a^3 - b^3

E em segundo, aplicando esse produto notável temos que:

\lim_{x\to 0} \dfrac{1 - \cos^3 x}{x \, \textrm{sen}\,x \cos x} = \lim_{x\to 0} \frac{(1 - \cos x)\left(1 + \cos x + \cos^2 x\right)}{x \, \textrm{sen}\,x \cos x}

Agora refaça a sua resolução. No final, a resposta vai continuar igual a 3/2.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)