• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Confusão com limite

Confusão com limite

Mensagempor Kabection » Sex Mar 23, 2012 23:04

Estou confuso na resolução desse limite, o resultado que encontrei foi 1 mas ao usar o software Geogebra o limite dá como resposta 0.5.

lim_{x\to0}\frac{\sqrt{1+x}-1}{x}

Minha resolução:

1- Multiplico em cima e em baixo por {\sqrt{1+x}+1 e fica \frac{1+x-1}{x*\sqrt{1+x}+x}

2- Corta 1 com -1 e x em cima com x em baixo resultando em \frac{1}{\sqrt{1+x}+x}

3 - Substituindo o 0 nos x's, fica \frac{1}{\sqrt{1+0}+0} = \frac{1}{1} = 1

Alguém poderia me ajudar?
Kabection
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Seg Jan 16, 2012 15:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciência da Computação
Andamento: cursando

Re: Confusão com limite

Mensagempor LuizAquino » Sex Mar 23, 2012 23:11

Kabection escreveu:Estou confuso na resolução desse limite, o resultado que encontrei foi 1 mas ao usar o software Geogebra o limite dá como resposta 0.5.
lim_{x\to0}\frac{\sqrt{1+x}-1}{x}


Kabection escreveu:Minha resolução:

1- Multiplico em cima e em baixo por {\sqrt{1+x}+1 e fica \frac{1+x-1}{x*\sqrt{1+x}+x}


Errado. Ao efetuar essa operação obtemos que:

\lim_{x\to 0}\dfrac{1 + x - 1}{x\left(\sqrt{1+x} + 1\right)}

Note que o seu denominador está errado.

Agora continue a resolução considerando essa correção.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Confusão com limite

Mensagempor Kabection » Sex Mar 23, 2012 23:20

Ahh, nossa que besteira eu errei, estava fazendo a distributiva direto. Muito obrigado LCMAquino.

Completando a resolução:

\lim_{x\to 0}\dfrac{1 + x - 1}{x\left(\sqrt{1+x} + 1\right)} = \frac{1}{\sqrt{1+x}+1} = \frac{1}{\sqrt{1+0}+1} = \frac{1}{1+1} = \frac{1}{2}
Kabection
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Seg Jan 16, 2012 15:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciência da Computação
Andamento: cursando

Re: Confusão com limite

Mensagempor LuizAquino » Sáb Mar 24, 2012 02:36

Kabection escreveu:Completando a resolução:

\lim_{x\to 0}\dfrac{1 + x - 1}{x\left(\sqrt{1+x} + 1\right)} = \frac{1}{\sqrt{1+x}+1} = \frac{1}{\sqrt{1+0}+1} = \frac{1}{1+1} = \frac{1}{2}


A ideia básica é essa. Mas tome cuidado com a sua escrita. O correto seria:

\lim_{x\to 0}\dfrac{1 + x - 1}{x\left(\sqrt{1+x} + 1\right)} = \lim_{x\to 0} \frac{1}{\sqrt{1+x}+1} = \frac{1}{\sqrt{1+0}+1} = \frac{1}{1+1} = \frac{1}{2}

Note que devemos escrever a notação "lim" até antes do momento de aproximar x por 0.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}