por Luciana Dias » Qui Mar 22, 2012 20:24
O topo de uma escada de 25 m de comprimento está encostada na parede vertical de um edifício. O pé da escada está a 7 metros de distância do edifício. Se o topo da escada escorregar 4 m para baixo ao longo da parede. Qual será o deslocamento do pé da escada ?
(A) 10 m
(B) 6 m
(C) 8 m
(D) 12 m
(E) 9 m
-
Luciana Dias
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Qui Mar 22, 2012 19:56
- Formação Escolar: ENSINO FUNDAMENTAL II
- Andamento: cursando
por joaofonseca » Qui Mar 22, 2012 21:33
Neste problema aplica-se os conhecimentos que temos do teorema de pitagoras e da resolução de sistemas de equações.
Sabemos, pelo texto, que inicialmente:

em que x é a distancia do chão até ao ponto em que a escada está na encostada na parede.
Depois sabemos:

Pelo fato de a altura x se ter alterado a distancia a que o pé da escada esta da parede também se alterou.
Monta-se um sistema:

e resolve-se!
-
joaofonseca
- Colaborador Voluntário

-
- Mensagens: 196
- Registrado em: Sáb Abr 30, 2011 12:25
- Localização: Lisboa
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
Voltar para Trigonometria
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- ajuda por favor
por zeramalho2004 » Dom Abr 05, 2009 21:31
- 3 Respostas
- 8526 Exibições
- Última mensagem por zeramalho2004

Seg Abr 06, 2009 10:25
Logaritmos
-
- ajuda por favor !!!
por Moacir » Qui Ago 27, 2009 00:19
- 2 Respostas
- 2619 Exibições
- Última mensagem por Moacir

Qui Ago 27, 2009 17:30
Funções
-
- Ajuda Por favor
por Sandy26 » Sex Abr 23, 2010 14:12
- 12 Respostas
- 6721 Exibições
- Última mensagem por MarceloFantini

Qui Abr 29, 2010 17:57
Logaritmos
-
- Ajuda, por favor!
por Dimas » Sex Set 24, 2010 23:16
- 2 Respostas
- 1738 Exibições
- Última mensagem por Rogerio Murcila

Qua Set 29, 2010 15:51
Trigonometria
-
- Ajuda por favor.
por Josiebruno » Qua Out 20, 2010 09:36
- 0 Respostas
- 1058 Exibições
- Última mensagem por Josiebruno

Qua Out 20, 2010 09:36
Álgebra Elementar
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.