por harreb » Qui Mar 22, 2012 06:42
Estou com dificuldade de resolver o limite abaixo:
Calcule, usando a definição

a derivada

-
harreb
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Qui Mar 22, 2012 06:20
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: Eletrônica
- Andamento: formado
por joaofonseca » Qui Mar 22, 2012 11:09
Antes de mais a expressão que apresentas traduz a definição de derivada num dado ponto. Neste caso x=0.
É verdade que quando se tenta comutar a expressão com os devidos valores, nos deparamos com a situação de

.
Rapidamente paramos para pensar e reconhecemos uma daquelas funções elementares de cujo gráfico todos devemos de memorizar. Neste caso temos

.
Através de um simulador gráfico podemos vizualizar que esta função é continua em todos os pontos exeto em x=0. Logo se não é continua, não é diferenciavel. Não é continua porque os limites laterais quando

não são iguais.
Para ser diferenciavel é necessário que seja continua e que o declive da reta tangente(derivada) seja igual, quer

pela esquerda, quer

pela direita.
Logo concluímos que está função não tem derivada em x=0.
Pela definição de derivada:

Obtemos:

cujo o dominio é R\{0}.
-
joaofonseca
- Colaborador Voluntário

-
- Mensagens: 196
- Registrado em: Sáb Abr 30, 2011 12:25
- Localização: Lisboa
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
por harreb » Sex Mar 23, 2012 06:43
Obrigado pela ajuda
-
harreb
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Qui Mar 22, 2012 06:20
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: Eletrônica
- Andamento: formado
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Cálculo de Limite] Resolução de um limite
por julianocoutinho » Seg Mai 13, 2013 01:47
- 3 Respostas
- 3096 Exibições
- Última mensagem por Man Utd

Qua Mai 15, 2013 22:26
Cálculo: Limites, Derivadas e Integrais
-
- [LIMITE] RESOLUÇÃO
por beel » Sex Set 02, 2011 15:14
- 2 Respostas
- 1596 Exibições
- Última mensagem por beel

Dom Out 16, 2011 17:03
Cálculo: Limites, Derivadas e Integrais
-
- [LIMITE] RESOLUÇÃO 2
por beel » Sex Set 02, 2011 17:58
- 2 Respostas
- 1587 Exibições
- Última mensagem por beel

Dom Out 16, 2011 17:03
Cálculo: Limites, Derivadas e Integrais
-
- [LIMITE] RESOLUÇÃO 3
por beel » Sáb Set 03, 2011 20:17
- 8 Respostas
- 4489 Exibições
- Última mensagem por beel

Dom Set 04, 2011 15:32
Cálculo: Limites, Derivadas e Integrais
-
- Resolução de Limite
por Ewerton Farias » Ter Abr 24, 2012 02:11
- 2 Respostas
- 1907 Exibições
- Última mensagem por Ewerton Farias

Sex Abr 27, 2012 17:30
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.