• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Ajuda com Prova: (Tripla ordenada=BASE)

Ajuda com Prova: (Tripla ordenada=BASE)

Mensagempor Matematico234 » Qua Mar 21, 2012 22:08

Gostaria de pedir a ajuda dos colegas para resolver esta questão:

Se as medidas angulares entre os vetores unitários u, v e w são dadas por ang(u, v) = 45? ,
ang(u, w) = 30? e ang(v, w) = 60? . Prove que a tripla ordenada (u, v, w) é uma base. Esta
base é ortonormal?

Tentei resolver, mas não sei escrever matemáticamente as afirmações, só sei escreve-las por extenso mesmo, então queria ver como seria uma demonstração correta, para eu me basear.
Obrigado.
Matematico234
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qua Mar 21, 2012 22:01
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: Ajuda com Prova: (Tripla ordenada=BASE)

Mensagempor MarceloFantini » Qua Mar 21, 2012 23:26

De cara, sabemos que não são ortogonais, logo não pode ser uma base ortonormal. Para tanto, o ângulo de cada par de vetores teria de ser 90°. Sobre ser base, basta perceber que os ângulos mostram que eles não são colineares entre si. Por exemplo, o ângulo entre u e v é de 45°, enquanto que de u e w é de 30°. Como o ângulo entre v e w não é zero ou 180°, vemos que não são colineares, logo base.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}