• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Probabilidade

Probabilidade

Mensagempor Pri Ferreira » Qua Mar 21, 2012 14:07

Considere-se o conjunto A = {1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11;
12; 13; 14}, formado pelos quatorze primeiros inteiros positivos,
e um conjunto B, formado por todos os subconjuntos
de A com exatamente três elementos. Escolhendo-se
aleatoriamente um elemento do conjunto B, a probabilidade
de ele ser formado por três números cuja soma é um múltiplo
de 3 equivale a:
a)168/17
b)4/31
c)1/13
d)31/91
Pri Ferreira
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 59
Registrado em: Qua Out 19, 2011 20:53
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática
Andamento: formado

Re: Probabilidade

Mensagempor LuizAquino » Sáb Mar 31, 2012 14:31

Pri Ferreira escreveu:Considere-se o conjunto A = {1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11;
12; 13; 14}, formado pelos quatorze primeiros inteiros positivos,
e um conjunto B, formado por todos os subconjuntos
de A com exatamente três elementos. Escolhendo-se
aleatoriamente um elemento do conjunto B, a probabilidade
de ele ser formado por três números cuja soma é um múltiplo
de 3 equivale a:
a)168/17
b)4/31
c)1/13
d)31/91


Note que cada elemento do conjunto B tem o formato {a, b, c}.

Note também que o número de elementos de B será \frac{14!}{14!(14 - 3)!} .

Agora você precisa listar todos os elementos de B que são formados por três números cuja a soma é um múltiplo de 3. Veja alguns exemplos: {1, 2, 3}, {1, 2, 6}, {1, 3, 5}, etc.

Depois que você contar quantos elementos tem nessa listagem, basta calcular a probabilidade solicitada no exercício.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Estatística

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.