• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Alguem sabe a Resolucao desta questao?

Alguem sabe a Resolucao desta questao?

Mensagempor SsEstevesS » Dom Mar 18, 2012 21:30

Olá,
Vejamos se alguém sabe como resolver esta questão, estou precisando.....

Postei 2 fotos para entenderem melhor o desenho e o que se pede.

Eu ja fiz a letra A, mas nao conssigo fazer a B.



Na figura abaixo temos uma sucessao de triangulos retangulos em que um de seus catetos mede 1cm. Cada angulo TETAn, onde n=1,2,3,4..... , o n representa o angulo formado pela hipotenusa e um cateto de 1cm. Faça o que se pede: :y: :y: :y:
Anexos
SC20120318-202454.png
Foto2
SC20120318-202404.png
Foto1
SsEstevesS
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Dom Nov 27, 2011 10:06
Formação Escolar: ENSINO MÉDIO
Área/Curso: CEFET
Andamento: cursando

Re: Alguem sabe a Resolucao desta questao?

Mensagempor MarceloFantini » Dom Mar 18, 2012 23:56

Mostre o seu raciocínio na letra a, pois dele a letra b segue.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Alguem sabe a Resolucao desta questao?

Mensagempor SsEstevesS » Seg Mar 19, 2012 00:21

Fiz PA

amanha mostro o que fiz para chegar na PA



creio que a b, seja PA de 2 ordem....
Mas nao sei como calcular somatorio dos fatores de PA de 2 ordem!
SsEstevesS
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Dom Nov 27, 2011 10:06
Formação Escolar: ENSINO MÉDIO
Área/Curso: CEFET
Andamento: cursando

Re: Alguem sabe a Resolucao desta questao?

Mensagempor MarceloFantini » Seg Mar 19, 2012 00:38

Se por progressão aritmética de "segunda ordem" você diz a^2 +b^2 +c^2 + ..., está errado. Isto não é progressão aritmética, é apenas a soma de quadrados. Vai a dica: \sum_{i=1}^n = \frac{n(n+1)(2n+1)}{6}. Usando isso você deve chegar na resposta.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Alguem sabe a Resolucao desta questao?

Mensagempor SsEstevesS » Seg Mar 19, 2012 14:28

Po cara,

é isso ai... Muito obrigado!


Mas voce sabe como se chega nesta formula? qualo caminho que se percorre para chegar la?


grato!
SsEstevesS
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Dom Nov 27, 2011 10:06
Formação Escolar: ENSINO MÉDIO
Área/Curso: CEFET
Andamento: cursando

Re: Alguem sabe a Resolucao desta questao?

Mensagempor MarceloFantini » Seg Mar 19, 2012 18:53

Não sei deduzir esta expressão, mas sei provar que ela é válida sempre, usando princípio da indução finita. Em todo caso, sabendo-a você já consegue resolver o problema.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Alguem sabe a Resolucao desta questao?

Mensagempor LuizAquino » Seg Mar 19, 2012 22:02

MarceloFantini escreveu:Vai a dica: \sum_{i=1}^n i^2 = \frac{n(n+1)(2n+1)}{6} .


SsEstevesS escreveu:Mas voce sabe como se chega nesta formula? qualo caminho que se percorre para chegar la?


MarceloFantini escreveu:Não sei deduzir esta expressão, mas sei provar que ela é válida sempre, usando princípio da indução finita.


Vamos começar a justificativa desenvolvendo o seguinte somatório:

\sum_{i=1}^n (i+1)^3 - i^3 = \sum_{i=1}^n 3i^2 + 3i + 1

\sum_{i=1}^n (i+1)^3 - i^3 = 3\sum_{i=1}^n i^2 + 3\sum_{i=1}^n i + \sum_{i=1}^n 1

No segundo membro, note que o primeiro somatório é exatamente o que queremos obter. Já o segundo é uma p. a. de primeiro termo 1, razão 1 e último termo n. Por fim, no terceiro estamos somando o número 1 uma quantidade n de vezes. Desse modo, temos que:

\sum_{i=1}^n (i+1)^3 - i^3 = \frac{3(1+n)n}{2} + n + 3\sum_{i=1}^n i^2

Por outro lado, temos que:

\sum_{i=1}^n (i+1)^3 - i^3 = (\cancel{2^3} - 1^3) + (\cancel{3^3} - \cancel{2^3}) + (\cancel{4^3} - \cancel{3^3}) + \cancel{\cdots} + [(n+1)^3 - \cancel{n^3}]

\sum_{i=1}^n (i+1)^3 - i^3 = (n+1)^3 - 1 = n^3 + 3n^2 + 3n

Usando as informações anteriores, temos que:

\frac{3(1+n)n}{2} + n + 3\sum_{i=1}^n i^2 = n^3 + 3n^2 + 3n

3\sum_{i=1}^n i^2 = \frac{2n^3 + 3n^2 + n}{2}

\sum_{i=1}^n i^2 = \frac{n(n+1)(2n+1)}{6}
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?