por bmachado » Dom Mar 18, 2012 17:39
(Ufu) Na figura a seguir, ABC é um triângulo e
suas medianas AP, BN e CM medem,
respectivamente, 8 cm, 10 cm e 4 cm.Se BQ é paralelo ao lado AC com 2BQ = AC, então,
o perímetro do triângulo APQ é igual a
a) 24 cm. b) 22 cm. c) 20 cm. d) 18 cm.
Obs'n sei postar imagem, favor acesse
Imagem no link:http://www.angloguarulhos.com.br/arquivos/arquivo_2322_20100417204641.pdf
-
bmachado
- Usuário Parceiro

-
- Mensagens: 53
- Registrado em: Qua Fev 29, 2012 00:28
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: EF
- Andamento: formado
por LuizAquino » Seg Mar 19, 2012 00:56
bmachado escreveu:(Ufu) Na figura a seguir, ABC é um triângulo e
suas medianas AP, BN e CM medem,
respectivamente, 8 cm, 10 cm e 4 cm.Se BQ é paralelo ao lado AC com 2BQ = AC, então,

- figura.png (2.09 KiB) Exibido 3793 vezes
o perímetro do triângulo APQ é igual a
a) 24 cm. b) 22 cm. c) 20 cm. d) 18 cm.
Como BQ = AC/2, BQ é paralelo a AC e NC = AC/2, temos que BN e AQ são paralelos BN = AQ.
Como N é ponto médio de AC e M é ponto médio de AB, temos que MN é paralelo a BC e MN = BC/2 (ou seja, MN é base média de ABC).
Lembrando que BQ e NC são paralelos e que BQ = NC, temos que Q, M e N são colineares (isto é, estão sobre uma mesma reta). Temos então que QN e BC são paralelos e que QN = BC.
Como MN = BC/2 = PC, temos que QM = BP = PC. Ou seja, QM e PC são paralelos, com QM = PC.
Temos então que PQ é paralelo a CM, com PQ = CM.
Considerando essas informações, tente terminar o exercício.
bmachado escreveu:
Obs'n sei postar imagem, favor acesse
Imagem no link:http://www.angloguarulhos.com.br/arquivos/arquivo_2322_20100417204641.pdf
Por favor, vide o tópico:
[Anexos] Envio de anexosviewtopic.php?f=134&t=7460
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por bmachado » Seg Mar 19, 2012 16:21
Obrigado pela orientacao, pois, eu estava tentando fazer por semelhanca de triangulo, valeu!
-
bmachado
- Usuário Parceiro

-
- Mensagens: 53
- Registrado em: Qua Fev 29, 2012 00:28
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: EF
- Andamento: formado
Voltar para Geometria Plana
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Perímetro do triângulo
por maria cleide » Sáb Mai 28, 2011 16:49
- 3 Respostas
- 3744 Exibições
- Última mensagem por MarceloFantini

Dom Mai 29, 2011 19:55
Geometria Plana
-
- Perímetro do triângulo
por leticiadelduque » Dom Ago 21, 2011 12:02
- 2 Respostas
- 1590 Exibições
- Última mensagem por leticiadelduque

Dom Ago 21, 2011 17:02
Geometria Plana
-
- [Perímetro do Triângulo]
por Mayra Luna » Qui Out 11, 2012 23:03
- 4 Respostas
- 2032 Exibições
- Última mensagem por Mayra Luna

Sex Out 12, 2012 17:25
Geometria Plana
-
- Calculo de perimetro do triangulo retangulo
por Marcinha » Dom Nov 13, 2011 16:12
- 1 Respostas
- 2797 Exibições
- Última mensagem por Andreza

Dom Nov 13, 2011 18:08
Geometria Plana
-
- Triangulo e quadrado, perimetro constante
por heldersmd » Sáb Set 15, 2012 12:42
- 1 Respostas
- 1389 Exibições
- Última mensagem por young_jedi

Sáb Set 15, 2012 14:54
Geometria Plana
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.