• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Trignometria] Fórmula Fundamental da Trignometria

[Trignometria] Fórmula Fundamental da Trignometria

Mensagempor rola09 » Dom Mar 18, 2012 15:12

Resolvi este exercício e queria perguntar e partilhar se estou errado em alguma parte das questões.

Considere a seguinte expressão:

B\left(\alpha \right)=-sen\left(5\pi-\alpha \right)+tg\alpha-2cos\left(\frac{5}{2}\pi-\alpha \right)+\frac{cos\left(\frac{5}{2}\pi-\alpha \right)}{sen\left(\frac{3}{2}\pi+\alpha \right)}

1 - Mostre que B\left(\alpha \right)=-3sen\left(\alpha \right).

B\left(\alpha \right)=-sen\left(5\pi-\alpha \right)+tg\left(\alpha \right)-2cos\left(\frac{5}{2}\pi-\alpha \right)+\frac{cos\left(\frac{5}{2}\pi-\alpha \right)}{sen\left(\frac{3}{2}\pi+\alpha \right)}\Leftrightarrow B\left(\alpha \right)=-sen\left(\pi-\alpha \right)+tg\left(\alpha \right)-2cos\left(\frac{\pi}{2}-\alpha \right)+\frac{cos\left(\frac{\pi}{2}-\alpha \right)}{sen\left(\frac{3\pi}{2}+\alpha \right)}\Leftrightarrow B\left(\alpha \right)=-sen\left(\alpha \right)+tg\left(\alpha \right)-2sen\left(\alpha \right)-\frac{sen\alpha}{cos\alpha}\Leftrightarrow B\left(\alpha \right)=-sen\left(\alpha \right)+tg\left(\alpha \right)-2sen\left(\alpha \right)-tg\left(\alpha \right)\Leftrightarrow B\left(\alpha \right)=-3sen\left(\alpha \right)


2 - Sabendo que tg\left(\alpha \right)=-2 e \alpha \in \left]-\frac{\pi}{2};\frac{\pi}{2} \right[ calcule o valor exato da expressão B\left(\alpha \right).

Aplicando a fórmula {tg}^{2}\alpha+1=\frac{1}{{cos}^{2}\alpha}

{\left(-2 \right)}^{2}+1=\frac{1}{{cos}^{2}\alpha}\Leftrightarrow cos\alpha=\pm\frac{\sqrt{5}}{5}. Como \alpha\in\left]-\frac{\pi}{2},\frac{\pi}{2} \right[ sabemos que cos\alpha=\frac{\sqrt{5}}{5}. Então, como tg\alpha=\frac{sen\alpha}{cos\alpha} concluímos que

-2=\frac{sen\alpha}{\frac{\sqrt{5}}{5}}\Leftrightarrow sen\alpha=-\frac{2\sqrt{5}}{5}

Neste caso B\left(\alpha \right)=-3*\left(-\frac{2\sqrt{5}}{5} \right)\Leftrightarrow B\left(\alpha \right)=\frac{6\sqrt{5}}{5}


3 - Resolva em , a condição B\left(\alpha \right)=3cos\left(-\alpha \right).

B\left(\alpha \right)=3cos\left(-\alpha \right)\Leftrightarrow -3sen\alpha=3cos\alpha\Leftrightarrow sen\alpha=-cos\alpha\Leftrightarrow \alpha=

-\frac{\pi}{4}+\kappa\pi\kappa \in Z
rola09
Usuário Ativo
Usuário Ativo
 
Mensagens: 16
Registrado em: Seg Mar 12, 2012 15:56
Formação Escolar: ENSINO MÉDIO
Área/Curso: Cientifico-Natural
Andamento: cursando

Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 10:38

Olá ! Tenho essa dúvida e não consigo montar o problema para resolução:

Qual é o racional não nulo cujo o quadrado é igual à sua terça parte ?

Grata.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 12:27

x^2 = \frac{x}{3}


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 12:55

também pensei que fosse assim, mas a resposta é \frac{1}{3}.

Obrigada Fantini.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 13:01

x^2 = \frac{x}{3} \Rightarrow x^2 - \frac{x}{3} = 0 \Rightarrow x \left(x - \frac{1}{3} \right) = 0

Como x \neq 0:

x - \frac{1}{3} = 0 \Rightarrow x = \frac{1}{3}

O que você fez?


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 16:17

eu só consegui fazer a igualdade, não consegui desenvolver o restante, não pensei em fatoração, mas agora entendi o que vc fez.

Obrigada.