por Luiz Augusto Prado » Ter Mar 13, 2012 14:41
Dúvidas sobre Geometria Euclidiana Plana
No início tinha me auto-sugerido um método para estudo da Geometria Euclidiana Plana: Fazendo-me de ignorante e cego para ir construindo o conhecimento, com base nos axiomas. Mas não estou tendo sucesso e gostaria de comentar as dúvidas que estou tendo, pois começo a achar que preciso de um método melhor para ir construindo este conhecimento.
1ª dúvida: Proposição 1.1 – duas retas distintas não se interceptam ou se interceptam em um único ponto.
Vou tentar exemplificar essa dúvida fazendo uma comparação com outra geometria não euclidiana para depois voltar a ser cego e ignorante.
Na geometria G, por exemplo, não há nenhuma reta paralela.
Para que essa geometria seja diferenciada da geometria euclidiana, deve existir uma, ou algumas séries de axiomas, que vou chamar de P, de forma que seja P na geometria G, e ~P na geometria Euclidiana.
Suponto que os 2 primeiros axiomas da geometria G sejam os mesmos da geometria euclidiana, se fizessemos a proposição 1.1 na geometria G, obteriamos uma verdade. E isso é absurdo pois na geometria G não existem retas paralelas. Ou seja, falta o axioma P para que possamos ver que a proposição é falsa.
Do mesmo modo na proposição 1.1 dentro da Geometria Euclidiana eu precisaria de uma proposição ~P para que eu pudesse provar que existam retas paralelas. Ou seja, os Axiomas I.1 e I.2 não parecem ser suficientes para garantir a existencia de retas paralelas na Geometria Euclidiana Plana.
Estou seguindo o livro do
João Lucas Marques Barbosa
Geometrie Euclidiana Plana
O que acham do livro? Essa duvida surgiu quando li a prova da proposição 1.1
-

Luiz Augusto Prado
- Usuário Dedicado

-
- Mensagens: 28
- Registrado em: Sex Nov 27, 2009 18:55
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
por MarceloFantini » Sáb Mar 17, 2012 16:38
Você não prova que existem retas paralelas, você postula. Na verdade você toma conjuntos de coisas (pontos, retas) e postula comportamentos sobre eles.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por Luiz Augusto Prado » Dom Mar 18, 2012 11:12
Estou tentando escrever esses axiomas de forma matemática:
Axioma I.1
Em qualquer que seja a reta existem pontos nela e fora dela.
Axioma I.2
2 pontos distintos quaisquer pertencem a uma única reta.
Isso está correto?

O definido está acentuado no é porque se eu escrevesse "def" dava erro.
-

Luiz Augusto Prado
- Usuário Dedicado

-
- Mensagens: 28
- Registrado em: Sex Nov 27, 2009 18:55
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
Voltar para Geometria Plana
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Ajuda! Geometria analítica(Retas paralelas)
por nitwcst » Ter Mar 20, 2012 19:51
- 1 Respostas
- 1198 Exibições
- Última mensagem por MarceloFantini

Ter Mar 20, 2012 20:47
Geometria Analítica
-
- geometria euclidiana plana
por daniela1994 » Ter Mar 13, 2012 15:47
- 2 Respostas
- 2459 Exibições
- Última mensagem por Luiz Augusto Prado

Qua Mar 14, 2012 08:30
Geometria Plana
-
- [Geometria Euclidiana Plana]
por Pessoa Estranha » Qua Ago 07, 2013 18:05
- 1 Respostas
- 1958 Exibições
- Última mensagem por e8group

Qui Ago 08, 2013 16:23
Geometria Plana
-
- [Geometria Euclidiana Plana]
por Pessoa Estranha » Qua Ago 07, 2013 18:29
- 1 Respostas
- 1639 Exibições
- Última mensagem por MateusL

Qui Ago 08, 2013 02:07
Geometria Plana
-
- [Geometria Euclidiana Plana]
por Pessoa Estranha » Sáb Ago 31, 2013 19:20
- 6 Respostas
- 7786 Exibições
- Última mensagem por adauto martins

Dom Jan 15, 2017 11:45
Geometria Plana
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
cálculo de limites
Autor:
Hansegon - Seg Ago 25, 2008 11:29
Bom dia.
Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado
\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]
Assunto:
cálculo de limites
Autor:
Molina - Seg Ago 25, 2008 13:25
Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.
Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo.
Caso ainda não tenha dado uma

, avisa que eu resolvo.
Bom estudo!
Assunto:
cálculo de limites
Autor:
Guill - Dom Abr 08, 2012 16:03

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.