• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Mostrar a veracidade de uma proposição/inequação

Mostrar a veracidade de uma proposição/inequação

Mensagempor Danilo » Sáb Mar 17, 2012 23:53

Pessoal, estou postando esses exercício aqui porque tenho que entregá-los segunda feira, e estous tentando ao máximo resolver sozinho, mas alguns que está difícil chegar a um resultado em tempo hábil. Fiquei o dia todo estudando sobre os números reais e as ''regras'' que devemos seguir nas desigualdades no livro calculo a uma variavel . Enfim, vamos ao exercício. Preciso mostrar que 2 proposições são verdadeiras.

São elas:

(a) Se 1,3 ? x ? 1,4 e 2,8 ? y ? 2,9 , então - 1,6 ? x - y ? - 1,4.

(b) Se 2,9 ? x ? 3 e 1,7 ? y ? 1,8 , então 2,9/1,8 ? x/y ? 3/1,7

Sei que para provar que uma proposição é falta basta exibir um contra exemplo, ou que a hipótese e a tese devem ser igualmente satisfeitas. Mas não sei como aplicar nessas inequações. Se alguem puder dar um caminho, agradeço. Enquanto isso vou tentando aqui... obrigado aeww
Danilo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 224
Registrado em: Qui Mar 15, 2012 23:36
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Mostrar a veracidade de uma proposição/inequação

Mensagempor LuizAquino » Dom Mar 18, 2012 01:15

Danilo escreveu:(a) Se 1,3 ? x ? 1,4 e 2,8 ? y ? 2,9 , então - 1,6 ? x - y ? - 1,4.


Se 2,8 \leq y \leq 2,9 , então -2,8 \geq -y \geq -2,9 . Ou ainda, podemos escrever que -2,9 \leq -y \leq -2,8 .

Somando membro a membro essa última inequação com a inequação 1,3 \leq x \leq 1,4, temos que:

1,3 + (-2,9) \leq x + (- y) \leq 1,4 + (-2,8)

-1,6 \leq x - y \leq - 1,4

Danilo escreveu:(b) Se 2,9 ? x ? 3 e 1,7 ? y ? 1,8 , então 2,9/1,8 ? x/y ? 3/1,7


Como y é positivo (e não nulo), podemos dizer que:

\dfrac{2,9}{y} \leq \dfrac{x}{y} \leq \dfrac{3}{y}

Além disso, também podemos dizer que:

\dfrac{1}{1,8} \leq \dfrac{1}{y} \leq \dfrac{1}{1,7}

Multiplicando essa inequação por 2,9 e por 3, obtemos que:

\dfrac{2,9}{1,8} \leq \dfrac{2,9}{y} \leq \dfrac{2,9}{1,7}

\dfrac{3}{1,8} \leq \dfrac{3}{y} \leq \dfrac{3}{1,7}

Sendo assim, temos que:

\dfrac{2,9}{1,8} \leq \dfrac{2,9}{y} \leq \dfrac{x}{y} \leq \dfrac{3}{y}\leq \dfrac{3}{1,7}

Temos então que:

\dfrac{2,9}{1,8} \leq \dfrac{x}{y}  \leq \dfrac{3}{1,7}
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Mostrar a veracidade de uma proposição/inequação

Mensagempor Danilo » Dom Mar 18, 2012 01:49

Obrigado professor!!!!!
Danilo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 224
Registrado em: Qui Mar 15, 2012 23:36
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: função demanda
Autor: ssousa3 - Dom Abr 03, 2011 20:55

alguém poderia me ajudar nesse exercício aqui Uma loja de CDs adquire cada unidade por R$20,00 e a revende por R$30,00. Nestas condições,
a quantidade mensal que consegue vender é 500 unidades. O proprietário estima que, reduzindo o preço para R$28,00, conseguirá vender 600 unidades por mês.
a) Obtenha a função demanda, supondo ser linear

Eu faço ensino médio mas compro apostilas de concursos para me preparar para mercado de trabalho e estudar sozinho não é fácil. Se alguém puder me ajudar aqui fico grato


Assunto: função demanda
Autor: ssousa3 - Seg Abr 04, 2011 14:30

Gente alguém por favor me ensine a calcular a fórmula da função demanda *-)