• Anúncio Global
    Respostas
    Exibições
    Última mensagem

parte da equação diferencial em f(x) e o grafico

parte da equação diferencial em f(x) e o grafico

Mensagempor Bio Molina » Sáb Jun 13, 2009 18:37

Dada a equação abaixo determine
a) a origem é um equilibrio do sistema? e estavel?
b)se a origem for um equilibrio determine, se existir, os outros pontos de equilibrio do sistema esboçando o grafico de f(x) e g(x) para 0<x<30
c) analiticamente, determine o valor minimo de r e o valor maximo de k para os quais e possivel termos tres equilibrios não triviais?
d) determine a estabilidade dos equilibrios
e) esboçe as curvas soluções, e o que ocorre com o inseto quando t-infinito

X’=x[f(x)-g(x)]

F(x)=r(1-x/K)

G(x)=x/(1+x2)


--------------------------------------------------------------------------------------------------------

No g'(x) consegui esboçar a equação das raizes

G’(x)= (1+x2) . 1-x(2x) g”(x)= (1+x2)2 .(-2x)-(1-x2)2x
(1+x2)2 (1+x2)2

= 1+x2-2x2 G”(1) < 0
(1+x2)2 max.local
g’(1) = 0

= 1-x2
(1+x2)2

G’(x) +0 ? x= +/- 1



-------------------------------------------------------------------------------------------

F(x) = x’=x[f(x)-g(x)]

Eq.= f(x) = 0

X=0

ou

F(x) =g(x)

Dai pra frente embananou a cabeça
Bio Molina
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Sáb Jun 13, 2009 13:58
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Biologia
Andamento: cursando

Voltar para Números Complexos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.