• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Integral - explicação da resolução

Integral - explicação da resolução

Mensagempor dina ribeiro » Qui Mar 15, 2012 21:20

Boa noite!
Gostaria de entender como foi resolvida essa integral . (Essa resolução é do livro)
\int_{}^{}1/({3x+1})^{2}dx
= 1/3\int_{}^{}1/{u}^{2}du
com [u=3x+1 , du=3 dx]
Não consigo enxergar a constante 1/3 que saiu da integral

= -1/3u + C
=-1/[3*(3x+1)] + C

Grata
dina ribeiro
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Qui Mar 15, 2012 19:47
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: Integral - explicação da resolução

Mensagempor fraol » Qui Mar 15, 2012 21:31

Veja que você pode escrever

\int  \frac{1}{({3x+1})^{2}}dx da seguinte forma:

\int  \frac{1}{({3x+1})^{2}} \frac{3}{3} dx , pois \frac{3}{3} = 1. Então podemos prosseguir assim:

\int  \frac{1}{3}  \frac{1}{({3x+1})^{2}} {3} dx e, por fim, assim:

\frac{1}{3}  \int  \frac{1}{({3x+1})^{2}} {3} dx

Agora é aplicar a substituição sugerida pelo livro.
fraol
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 392
Registrado em: Dom Dez 11, 2011 20:08
Localização: Mogi das Cruzes-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado

Re: Integral - explicação da resolução

Mensagempor dina ribeiro » Qui Mar 15, 2012 21:53

fraol escreveu:Veja que você pode escrever

\int  \frac{1}{({3x+1})^{2}}dx da seguinte forma:

\int  \frac{1}{({3x+1})^{2}} \frac{3}{3} dx , pois \frac{3}{3} = 1. Então podemos prosseguir assim:

\int  \frac{1}{3}  \frac{1}{({3x+1})^{2}} {3} dx e, por fim, assim:

\frac{1}{3}  \int  \frac{1}{({3x+1})^{2}} {3} dx

Agora é aplicar a substituição sugerida pelo livro.



Obrigada!!!
dina ribeiro
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Qui Mar 15, 2012 19:47
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: Integral - explicação da resolução

Mensagempor dina ribeiro » Qui Mar 15, 2012 22:25

Gostaria de entender essa regra: u = 3x+1

Em uma das tentativas em resolver a integral usei : \int_{}^{}u*dv = u*v - \int_{}^{} v *du
sendo u=\frac{1}{(3x+1)}{}^{2} e dv= dx

E em outra tentativa simplemente a integral deu ln (3x+1)².

E possível que me explique passo a passo como foi feito a respota do livro.

Grata
dina ribeiro
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Qui Mar 15, 2012 19:47
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: Integral - explicação da resolução

Mensagempor fraol » Qui Mar 15, 2012 23:24

fraol escreveu:Veja que você pode escrever

\int  \frac{1}{({3x+1})^{2}}dx da seguinte forma:

\int  \frac{1}{({3x+1})^{2}} \frac{3}{3} dx , pois \frac{3}{3} = 1. Então podemos prosseguir assim:

\int  \frac{1}{3}  \frac{1}{({3x+1})^{2}} {3} dx e, por fim, assim:

\frac{1}{3}  \int  \frac{1}{({3x+1})^{2}} {3} dx

Agora é aplicar a substituição sugerida pelo livro.


Assim vamos continuar:

Se você fizer a substituição sugerida: u = 3x + 1 então derivando essa expressão em relação a x você tem:

u = 3x + 1 => \frac{du}{dx} = 3 \iff du = 3 dx .

Voltando na integral que desenvolvemos e fazendo a substituição:

\frac{1}{3}  \int  \frac{1}{({3x+1})^{2}} {3} dx = \frac{1}{3}  \int  \frac{1}{(u)^{2}} du

Agora é o momento de desenvolver a integral de \frac{1}{u^2} que é igual a - \frac{1}{u} .

Assim \frac{1}{3}  \int  \frac{1}{(u)^{2}} du = \frac{1}{3} \left ( - \frac{1}{u} \right ) + C .

Agora é desfazer a substituição de u e você terá a expressão do livro.
fraol
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 392
Registrado em: Dom Dez 11, 2011 20:08
Localização: Mogi das Cruzes-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.