por dina ribeiro » Qui Mar 15, 2012 21:20
Boa noite!
Gostaria de entender como foi resolvida essa integral . (Essa resolução é do livro)

=
com [u=3x+1 , du=3 dx]
Não consigo enxergar a constante 1/3 que saiu da integral

![=-1/[3*(3x+1)] + C =-1/[3*(3x+1)] + C](/latexrender/pictures/6ca0a9ce4e3a3f4945adce93c839d4cf.png)
Grata
-
dina ribeiro
- Usuário Ativo

-
- Mensagens: 14
- Registrado em: Qui Mar 15, 2012 19:47
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: cursando
por fraol » Qui Mar 15, 2012 21:31
Veja que você pode escrever

da seguinte forma:

, pois

. Então podemos prosseguir assim:

e, por fim, assim:

Agora é aplicar a substituição sugerida pelo livro.
-
fraol
- Colaborador Voluntário

-
- Mensagens: 392
- Registrado em: Dom Dez 11, 2011 20:08
- Localização: Mogi das Cruzes-SP
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: formado
por dina ribeiro » Qui Mar 15, 2012 21:53
fraol escreveu:Veja que você pode escrever

da seguinte forma:

, pois

. Então podemos prosseguir assim:

e, por fim, assim:

Agora é aplicar a substituição sugerida pelo livro.
Obrigada!!!
-
dina ribeiro
- Usuário Ativo

-
- Mensagens: 14
- Registrado em: Qui Mar 15, 2012 19:47
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: cursando
por dina ribeiro » Qui Mar 15, 2012 22:25
Gostaria de entender essa regra: u = 3x+1
Em uma das tentativas em resolver a integral usei :

sendo

e dv= dx
E em outra tentativa simplemente a integral deu ln (3x+1)².
E possível que me explique passo a passo como foi feito a respota do livro.
Grata
-
dina ribeiro
- Usuário Ativo

-
- Mensagens: 14
- Registrado em: Qui Mar 15, 2012 19:47
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: cursando
por fraol » Qui Mar 15, 2012 23:24
fraol escreveu:Veja que você pode escrever

da seguinte forma:

, pois

. Então podemos prosseguir assim:

e, por fim, assim:

Agora é aplicar a substituição sugerida pelo livro.
Assim vamos continuar:
Se você fizer a substituição sugerida:

então derivando essa expressão em relação a x você tem:

.
Voltando na integral que desenvolvemos e fazendo a substituição:

Agora é o momento de desenvolver a integral de

que é igual a

.
Assim

.
Agora é desfazer a substituição de u e você terá a expressão do livro.
-
fraol
- Colaborador Voluntário

-
- Mensagens: 392
- Registrado em: Dom Dez 11, 2011 20:08
- Localização: Mogi das Cruzes-SP
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: formado
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Re: Resolução para este problema com explicação:
por drikapic » Sex Out 04, 2013 18:21
- 1 Respostas
- 992 Exibições
- Última mensagem por Russman

Sáb Out 05, 2013 01:33
Matemática Financeira
-
- Integral - Resolução de integral indefinida.
por brunoisoppo » Qui Mar 03, 2016 15:26
- 0 Respostas
- 2768 Exibições
- Última mensagem por brunoisoppo

Qui Mar 03, 2016 15:26
Cálculo: Limites, Derivadas e Integrais
-
- Resolução de Integral
por suziquim » Qua Jun 08, 2011 13:18
- 4 Respostas
- 2378 Exibições
- Última mensagem por suziquim

Qui Jun 09, 2011 12:04
Cálculo: Limites, Derivadas e Integrais
-
- Resolução de Integral -
por vmouc » Dom Ago 21, 2011 15:01
- 2 Respostas
- 1704 Exibições
- Última mensagem por Neperiano

Dom Ago 21, 2011 15:25
Cálculo: Limites, Derivadas e Integrais
-
- [Resolução de integral]
por adomingues » Sex Jan 20, 2012 16:45
- 2 Respostas
- 1692 Exibições
- Última mensagem por ant_dii

Sáb Jan 21, 2012 02:39
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Proporcionalidade
Autor:
silvia fillet - Qui Out 13, 2011 22:46
Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Sáb Out 15, 2011 10:25
POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?
P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50
P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25
P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833
4/6 =10/15 =14/21 RAZÃO = 2/3
SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA
Assunto:
Proporcionalidade
Autor:
ivanfx - Dom Out 16, 2011 00:37
utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.
Assunto:
Proporcionalidade
Autor:
Marcos Roberto - Dom Out 16, 2011 18:24
Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.
Você conseguiu achar o dia em que caiu 15 de novembro de 1889?
Assunto:
Proporcionalidade
Autor:
deiasp - Dom Out 16, 2011 23:45
Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 06:23
Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 07:18
Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 07:40
Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias
44242:7 = 6320 + resto 2
è assim, nâo sei mais sair disso.
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 10:24
que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta
Assunto:
Proporcionalidade
Autor:
Kiwamen2903 - Seg Out 17, 2011 19:43
Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:
De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.
De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.
De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.
Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.