• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Conceitos de pontos notáveis em triângulo

Conceitos de pontos notáveis em triângulo

Mensagempor alfabeta » Sex Mar 09, 2012 20:53

No triângulo ABC da figura abaixo, os segmentos AD e BC são perpendiculares, os ângulos BÂE e EÂC são iguais, as medidas dos segmentos BM e MC são iguais e r é uma reta perpendicular ao segmento BC, passando por M.



Com base nessas informações, julgue os itens:
01) Os triângulos ABM e AMC têm áreas iguais.
02) O centro da circunferência que circunscreve o triângulo ABC pertence à reta r.
03) a.senbeta = b.sen(alfa), onde a e b indicam as medidas dos segmentos EM e AM, respectivamente.
04) O raio da circunferência que circunscreve o triângulo ABD mede um terço da medida do lado AB.

Tentativa:
01) verdadeira, pois são divididos pela mediana. Mas como provo isto?
E as outras não sei fazer.
Anexos
triangulo.gif
triangulo.gif (3.25 KiB) Exibido 1899 vezes
alfabeta
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 40
Registrado em: Ter Fev 28, 2012 11:37
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Conceitos de pontos notáveis em triângulo

Mensagempor LuizAquino » Ter Mar 13, 2012 17:36

alfabeta escreveu:No triângulo ABC da figura abaixo, os segmentos AD e BC são perpendiculares, os ângulos BÂE e EÂC são iguais, as medidas dos segmentos BM e MC são iguais e r é uma reta perpendicular ao segmento BC, passando por M.

triangulo.gif
triangulo.gif (3.25 KiB) Exibido 1879 vezes


Com base nessas informações, julgue os itens:
01) Os triângulos ABM e AMC têm áreas iguais.
02) O centro da circunferência que circunscreve o triângulo ABC pertence à reta r.
03) a.senbeta = b.sen(alfa), onde a e b indicam as medidas dos segmentos EM e AM, respectivamente.
04) O raio da circunferência que circunscreve o triângulo ABD mede um terço da medida do lado AB.


alfabeta escreveu:Tentativa:
01) verdadeira, pois são divididos pela mediana. Mas como provo isto?
E as outras não sei fazer.


Note que tanto ABM quanto AMC possuem a mesma medida para a altura e a mesma medida para a base.

alfabeta escreveu:02) O centro da circunferência que circunscreve o triângulo ABC pertence à reta r.


Veja a definição de circuncentro:
http://pt.wikipedia.org/wiki/Tri%C3%A2ngulo#Mediatriz

alfabeta escreveu:03) a.senbeta = b.sen(alfa), onde a e b indicam as medidas dos segmentos EM e AM, respectivamente.


Veja a Lei dos Senos:
http://pt.wikipedia.org/wiki/Lei_dos_senos

alfabeta escreveu:04) O raio da circunferência que circunscreve o triângulo ABD mede um terço da medida do lado AB.


Faça uma pesquisa sobre a relação que existe entre a hipotenusa de um triângulo retângulo e o diâmetro da circunferência que circunscreve esse triângulo retângulo.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D