• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Ajuda com integral envolvendo tgx e sen^2x

Ajuda com integral envolvendo tgx e sen^2x

Mensagempor kryzay » Qua Mar 07, 2012 09:02

Fala galera blz?

Tava resolvendo alguns exercícios e me deparei com a seguinte integral:

\int{\frac{tgx dx}{sen^2x}}

A professora fez isso:

\int{\frac{senx dx}{cosx*sen^2x}}

\int{\frac{senx dx}{cosx*(1-cos^2x)}}

Até ai tudo bem mas olhem o que me deixou encabulado:

\int{\frac{senx dx}{cosx}} - \int{\frac{senx dx}{cos^3x}}

Não aceitei muito bem isso que ela fez. Isso é possível galera?

Obrigado.
kryzay
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Seg Jul 25, 2011 20:53
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando

Re: Ajuda com integral envolvendo tgx e sen^2x

Mensagempor LuizAquino » Qua Mar 07, 2012 09:18

kryzay escreveu:\int{\frac{senx dx}{cosx*(1-cos^2x)}}

Até ai tudo bem mas olhem o que me deixou encabulado:

\int{\frac{senx dx}{cosx}} - \int{\frac{senx dx}{cos^3x}}

Não aceitei muito bem isso que ela fez. Isso é possível galera?


Não é possível.

Tipicamente, temos que:

\dfrac{A}{B-C} \neq \dfrac{A}{B} - \frac{A}{C}

Por outro lado, temos que:

\dfrac{B-C}{A} = \dfrac{B}{A} - \frac{C}{A}
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Ajuda com integral envolvendo tgx e sen^2x

Mensagempor kryzay » Qua Mar 07, 2012 09:40

Sim sim Luiz, isso que eu pensei.

Porém você sabe alguma solução para resolver a integral?

O máximo que cheguei foi:

\int \frac{dx}{senx*cosx}

A partir daí garrei. =/
kryzay
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Seg Jul 25, 2011 20:53
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando

Re: Ajuda com integral envolvendo tgx e sen^2x

Mensagempor LuizAquino » Qua Mar 07, 2012 10:16

kryzay escreveu:Sim sim Luiz, isso que eu pensei.

Porém você sabe alguma solução para resolver a integral?

O máximo que cheguei foi:

\int \frac{dx}{senx*cosx}

A partir daí garrei. =/


Volte ao seguinte ponto:

\int \dfrac{\textrm{sen}\,x}{\cos x\left(1-\cos^2 x\right)}\, dx

Use a substituição u = \cos x e du = -\,\textrm{sen}\, x \, dx :

\int \dfrac{\textrm{sen}\,x}{\cos x\left(1-\cos^2 x\right)}\, dx = \int -\dfrac{1}{u\left(1-u^2\right)}\, du

Use a técnica de frações parciais:

\int -\dfrac{1}{u\left(1-u^2\right)}\, du = -\frac{1}{2}\int \dfrac{2}{u} - \frac{1}{1+u} + \frac{1}{1-u} \, du

Agora tente terminar a partir daí.

Observação

Para revisar a técnica de frações parciais que foi utilizada, eu gostaria de recomendar que você assista a videoaula "29. Cálculo I - Integração por Frações Parciais (Caso I e II)". Ela está disponível em meu canal no YouTube:

http://www.youtube.com/LCMAquino
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Ajuda com integral envolvendo tgx e sen^2x

Mensagempor kryzay » Qua Mar 07, 2012 15:34

Muito obrigado Luiz. Embora eu não conheça a técnica de frações parciais, você já resolveu minha dúvida.

Hoje tenho aula com a professora, e vou retomar essa questão com ela.
Depois eu posto aqui o que ela falar.

Parabéns Luiz pelas aulas e pela dedicação.
kryzay
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Seg Jul 25, 2011 20:53
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}