• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Expressão Trigonométrica

Expressão Trigonométrica

Mensagempor Anderson Alves » Dom Mar 04, 2012 22:21

Olá Galerinha.

Tenho dúvida nesta questão:
Se a + b = 180º, então a expressão 1 - sen a * sen b vale:
Resp.: Cos² a

Eu responderia 0; pois se a+b é igual a 180º, então a é igual 90º e b é igual a 90º;
90 + 90 = 180; então 1 - sen 90º * sen 90º seria igual a 0;
mas marca como resposta Cos² a.

Ficarei grato pela ajuda que tiver de alguém.
Obrigado pela atenção.
Anderson Alves
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 29
Registrado em: Sex Fev 24, 2012 22:39
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Curso Técnico em Informática
Andamento: formado

Re: Expressão Trigonométrica

Mensagempor TheoFerraz » Dom Mar 04, 2012 23:05

a sua resposta partiu do pressuposto que a e b são iguais... a equação a + b = 180 se resolve para a = 90 e b = 90, sim sim, mas também se resolve pra a = 1 e b = 179 não é? entre varias outras resoluções a e b não precisam ser iguais


se a + b = 180 temos que:

sen( a+b) = 0

dai,

sen(a)cos(b) + sen(b)cos(a) = 0

sen(a)cos(b) = - sen(b)cos(a)

rapidamente, isso nos leva a ver que:

tg(a) = - tg(b)

isso nos mostra que a e b são praticamente o mesmo angulo, o problema é que um deles é do primeiro quadrante e o outro é do segundo! mas o angulo que eles formam com o eixo X é o mesmo! pense no círculo trigonométrico, voce vai perceber...

outro jeito de ver isso é que, se a + b = \pi então a = pi - b isso é justamente a equaçãozinha que a gente usa pra "transpor" um angulo do primeiro pro segundo quadrante! ficou claro?

caso tenha ficado, pense que, como são o mesmo angulo em quadrantes diferentes (específicamente 1 e 2):

sen(a) = sen(b)

e

cos(a) = - cos(b)

dai,

sen(a)sen(b) = {sen}^{2}(a) = {sen}^{2}(b)

e

cos(a)cos(b) = {cos}^{2}(a) = {cos}^{2}(b)
TheoFerraz
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 107
Registrado em: Qua Abr 13, 2011 19:23
Formação Escolar: GRADUAÇÃO
Área/Curso: Bacharelado em Física
Andamento: cursando

Re: Expressão Trigonométrica

Mensagempor Anderson Alves » Dom Mar 04, 2012 23:27

Obrigado!!!
Anderson Alves
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 29
Registrado em: Sex Fev 24, 2012 22:39
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Curso Técnico em Informática
Andamento: formado


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.