• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Integrável ou não

Integrável ou não

Mensagempor marciommuniz » Qui Jun 11, 2009 00:54

Olá amigos do site..
estive esses dias discutindo num topico do orkut sobre a integral:

?ln |3x - 2| dx
Lá eles estavam falando que não era integrável, mas não me deram explicações do porquê.
Bem, ao meu ver eu fiz essa integral assim:

?ln|3x-2|dx
INTEGRAÇÃO POR PARTES

u = ln 3x -2
du = (ln 3x-2)' --> REGRA DA CADEIA du = 3/(3x-2)dx
dv = 1. dx --> v = x

?ln |3x-2|dx = uv - ?vdu = ln |3x-2|.x - ?3/(3x-2)dx

vamos agora fazer a integral em negrito

?3/(3x-2)dx

u = 3x -2 du = 3 dx, portando dx = 1/3du , então
?(u+2)/u . 1/3du = 1/3?(u+2)/u

= 1/3? u/u + 2/u = ?1 + ?2/3x-2 = x + 2?dx/3x-2

vamos fazer a outra integral em negrito

u = 3x-2 du = 3dx logo, dx = 1/3du
?dx/3x-2 = ?dx/u . 1/3du = 1/3?dx/u = 1/3.ln |3x-2|

Agora a parte enjoada ahhahaha JUNTAR TUDO!

?ln |3x-2|dx = ln |3x-2|.x - x - 2/3.ln|3x-2| + K, sendo K uma constante.
"Nunca penso no futuro, ele chega rápido demais." Albert Einsten
Avatar do usuário
marciommuniz
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 29
Registrado em: Qua Abr 08, 2009 20:06
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. Metalúrgica UFF /Química Lic. UENF
Andamento: cursando

Re: Integrável ou não

Mensagempor Lucio Carvalho » Qui Ago 20, 2009 13:17

Olá marciommuniz,
Sou novo no site e sei que o teu tópico já tem algum tempo. Talvez até já chegaste ao resultado!
Também considero que seja possível integrar!
Apresento aqui uma sugestão.
\int_{}^{}ln|3.x-2|.dx
Integrando por partes, ficaria:

u = ln|3.x - 2| => u' = 3/(3.x - 2)

v' = 1 => v = x - 2/3 (Aqui está a novidade!)

Então: \int_{}^{}ln|3.x-2|dx=(x-\frac{2}{3}).ln(3.x-2)-\int_{}^{}\frac{3.x-2}{3.x-2}.dx

\int_{}^{}ln|3.x-2|dx=(x-\frac{2}{3}).ln(3.x-2)-\int_{}^{}1.dx

E finalmente, teremos: \int_{}^{}ln|3.x-2|dx=(x-\frac{2}{3}).ln(3.x-2)-x+k, sendo k = constante.

Penso ser esse um dos resultados. Entretanto, aguardo a opinião dos outros participantes!
Avatar do usuário
Lucio Carvalho
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 127
Registrado em: Qua Ago 19, 2009 11:33
Localização: Rua 3 de Fevereiro - São Tomé
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Física/Química
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: