por marciommuniz » Qui Jun 11, 2009 00:54
Olá amigos do site..
estive esses dias discutindo num topico do orkut sobre a integral:
?ln |3x - 2| dx
Lá eles estavam falando que não era integrável, mas não me deram explicações do porquê.
Bem, ao meu ver eu fiz essa integral assim:
?ln|3x-2|dx
INTEGRAÇÃO POR PARTES
u = ln 3x -2
du = (ln 3x-2)' --> REGRA DA CADEIA du = 3/(3x-2)dx
dv = 1. dx --> v = x
?ln |3x-2|dx = uv - ?vdu = ln |3x-2|.x - ?3/(3x-2)dx
vamos agora fazer a integral em negrito
?3/(3x-2)dx
u = 3x -2 du = 3 dx, portando dx = 1/3du , então
?(u+2)/u . 1/3du = 1/3?(u+2)/u
= 1/3? u/u + 2/u = ?1 + ?2/3x-2 = x + 2?dx/3x-2
vamos fazer a outra integral em negrito
u = 3x-2 du = 3dx logo, dx = 1/3du
?dx/3x-2 = ?dx/u . 1/3du = 1/3?dx/u = 1/3.ln |3x-2|
Agora a parte enjoada ahhahaha JUNTAR TUDO!
?ln |3x-2|dx = ln |3x-2|.x - x - 2/3.ln|3x-2| + K, sendo K uma constante.
"Nunca penso no futuro, ele chega rápido demais." Albert Einsten
-

marciommuniz
- Usuário Dedicado

-
- Mensagens: 29
- Registrado em: Qua Abr 08, 2009 20:06
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Eng. Metalúrgica UFF /Química Lic. UENF
- Andamento: cursando
por Lucio Carvalho » Qui Ago 20, 2009 13:17
Olá marciommuniz,
Sou novo no site e sei que o teu tópico já tem algum tempo. Talvez até já chegaste ao resultado!
Também considero que seja possível integrar!
Apresento aqui uma sugestão.

Integrando por partes, ficaria:
u = ln|3.x - 2| => u' = 3/(3.x - 2)
v' = 1 => v = x - 2/3 (Aqui está a novidade!)
Então:

E finalmente, teremos:

, sendo k = constante.
Penso ser esse um dos resultados. Entretanto, aguardo a opinião dos outros participantes!
-

Lucio Carvalho
- Colaborador Voluntário

-
- Mensagens: 127
- Registrado em: Qua Ago 19, 2009 11:33
- Localização: Rua 3 de Fevereiro - São Tomé
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Física/Química
- Andamento: formado
Voltar para Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
(FGV) ... função novamente rs
Autor:
my2009 - Qua Dez 08, 2010 21:48
Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :
Assunto:
(FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25
Uma função de 1º grau é dada por

.
Temos que para

,

e para

,

.

Ache o valor de

e

, monte a função e substitua

por

.
Assunto:
(FGV) ... função novamente rs
Autor:
Pinho - Qui Dez 16, 2010 13:57
my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :
f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20
Assunto:
(FGV) ... função novamente rs
Autor:
dagoth - Sex Dez 17, 2010 11:55
isso ai foi uma questao da FGV?
haahua to precisando trocar de faculdade.
Assunto:
(FGV) ... função novamente rs
Autor:
Thiago 86 - Qua Mar 06, 2013 23:11
Saudações!
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b
Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.