por alfabeta » Qui Mar 01, 2012 15:13
Um homem caminha sobre a superfície horizontal de uma praça aproximando-se de uma estátua de 3 m de altura
que fica apoiada em um bloco de concreto de 3,7 m de altura. Quando o turista se aproxima da estátua, o angulo visual de
observação varia em função da distância do turista à base de sustentação da estátua (bloco). Se o olho do homem fica a 1,7 m
do solo, determine a distância entre a base da estátua e o homem quando o ângulo visual é máximo.
-
alfabeta
- Usuário Dedicado

-
- Mensagens: 40
- Registrado em: Ter Fev 28, 2012 11:37
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por timoteo » Qui Mar 01, 2012 20:44
alfa, fiz assim.
sen = 5/h, onde h é a hipotenusa, e 5 é a altura dos olhos do homem ao topo da estatua. elevando ao quadado temos:

=

.
substituindo isso na equaçao fundamental da trigonometria.

+

= 1, desenvolvendo achamos: o cateto adjacente mede:
![\sqrt[]{{h}^{2} - 25} \sqrt[]{{h}^{2} - 25}](/latexrender/pictures/bedf6ded3e037def79c45ebc42aa9fab.png)
.
este calculo é da altura dos olhos do homem, caso a altura seja desde a base enato é so substituir o valor de 5 por 6,7.
-
timoteo
- Colaborador Voluntário

-
- Mensagens: 117
- Registrado em: Ter Fev 14, 2012 07:07
- Formação Escolar: GRADUAÇÃO
- Área/Curso: bacharel matemática
- Andamento: cursando
por alfabeta » Qui Mar 01, 2012 21:13
Desculpa, mas ainda não entendi. Poderia fazer o desenho. Obrigado.
-
alfabeta
- Usuário Dedicado

-
- Mensagens: 40
- Registrado em: Ter Fev 28, 2012 11:37
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por timoteo » Sex Mar 02, 2012 01:00
alfa, nao to conseguindo anexar o desenho.
mas, é so vc traçar um triangulo retangulo com angulo reto na base da estatua.
-
timoteo
- Colaborador Voluntário

-
- Mensagens: 117
- Registrado em: Ter Fev 14, 2012 07:07
- Formação Escolar: GRADUAÇÃO
- Área/Curso: bacharel matemática
- Andamento: cursando
Voltar para Geometria Plana
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Ângulos
por admin » Sex Set 07, 2007 06:42
- 3 Respostas
- 11653 Exibições
- Última mensagem por Numwantida

Qui Mai 24, 2018 05:06
Pérolas
-
- Angulos ??????
por ByRobert » Qui Set 01, 2011 12:59
- 6 Respostas
- 7616 Exibições
- Última mensagem por LuizAquino

Qui Set 01, 2011 21:24
Trigonometria
-
- ângulos
por Thays » Sáb Jan 14, 2012 11:59
- 6 Respostas
- 4279 Exibições
- Última mensagem por Thays

Qui Jan 19, 2012 09:36
Geometria Plana
-
- Angulos
por silvia fillet » Sáb Fev 04, 2012 20:13
- 1 Respostas
- 2188 Exibições
- Última mensagem por Arkanus Darondra

Sáb Fev 04, 2012 22:06
Geometria Plana
-
- [ângulos]
por Ederson_ederson » Qui Jul 02, 2015 08:49
- 3 Respostas
- 3070 Exibições
- Última mensagem por Ederson_ederson

Seg Jul 06, 2015 17:18
Geometria Plana
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.