• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Amigos do Orkut

Regras do fórum
A classificação destes desafios em fáceis, médios e difíceis, é apenas ilustrativa.
Eventualmente, o que pode ser difícil para a maioria, pode ser fácil para você e vice-versa.

Amigos do Orkut

Mensagempor Molina » Qua Jun 10, 2009 11:57

Bom dia.

Este desafio fica para quem quiser de "divertir" um pouco neste feriadão:


Prove que existe pelo menos duas pessoas no Orkut com o mesmo número de amigos.

Devemos considerar que:

# O número de pessoas que utilizam o orkut é n > 1
# A relação "ser amigo" é simétrica (Se X é amigo de Y, então Y é amigo de X)
# A relação "ser amigo" é não-reflexiva (X não é amigo de X)



Confesso que antes de ver esta questão, não tinha parado para pensar que isso acontece mesmo. Minha sugestão é usar provar por indução. Mas antes, verifique que isso é verdade mesmo, pegar por exemplo, 2 pessoas, 3 pessoas, 4 pessoas, 5 pessoas...


Aproveito aqui para deixa o link de nossa comunidade no orkut: http://www.orkut.com.br/Main#Community.aspx?cmm=297062


Boa sorte, :idea:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Amigos do Orkut

Mensagempor Douglasm » Seg Fev 22, 2010 17:20

Boa tarde Molina. Durante meus estudo de combinatória, esbarrei com a solução desse problema. Ele é baseado no princípio das gavetas de Dirichlet. Observemos que num grupo de n pessoas, um pessoa conhece entre 0 e n-1 pessoas. Observemos também que se há uma pessoa que conhece todas as outras (n-1 pessoas) não há pessoa alguma sem conhecidos (que conheça 0 pessoas). Distribuindo em "gavetas" as pessoas que conhecem 0 pessoas, 1 pessoa, 2 pessoas,...,n-1 pessoas, temos n "gavetas". Mas como não podemos ter a 1ª e a última gaveta ocupadas ao mesmo tempo, isso demonstra que pelo menos 2 indivíduos conhecem o mesmo número de pessoas. Creio que seja isso. Até a próxima!
Avatar do usuário
Douglasm
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 270
Registrado em: Seg Fev 15, 2010 10:02
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Desafios Difíceis

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)