• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Desigualdades de funções compostas

Desigualdades de funções compostas

Mensagempor samra » Ter Fev 28, 2012 10:41

Olá pessoal, ontem o meu professor de Calculo I deu uma lista de exercicios com questões do ensino medio para saber como está o conhecimento da turma acerca de tais assuntos (foi o primeiro dia de aula). Alguns deles eu consegui fazer, outros infelizmente não soube. Então eu gostaria de colok aki tais questões, a forma que eu resolvi para vocês avaliar de está certo ou não, e qual matéria eu tenho que revisar para conseguir resolver tais questões.

Resolva as desigualdades abaixo, escrevendo o conjunto solução das mesmas por meio de intervalos:
a) -4< 5-3x ? 17
eu tentei resolver ela por parte, faz muito tempo que eu estudei isso, não me lembro muito bem como se faz
-4<5-3x
-4-5<-3x
-9 <-3x *(-1)
9>3x
9/3>x
3>x ou x<3

5-3x ? 17
-3x?17-5
-3x?12 *(-1)
3x ? -12
x?-4

ai eu fiz uma reta e marquei a intersecção entre esses dois pontos, ai minha resposta deu:
S={-4? x <3} é assim que se resolve?
_______________________________________________________________________________

Se f(x)=x²+2x-1 e g(x)=2x-3, encontre cada uma das seguintes funções compostas:
a)f o g
b)g o f
c)g o g o g
Não me lembro de como fazê-las, se alguém puder colok uma explicação exemplificando, não precisa resolvê-las, só colok algum jeito que eu consiga entender o que foi feito, assim como fazê-las.
"sábio é aquele que conhece os limites da própria ignorância" Sócrates
samra
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 41
Registrado em: Sex Jan 27, 2012 11:31
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Técnico em Informatica
Andamento: formado

Re: Desigualdades de funções compostas

Mensagempor LuizAquino » Ter Fev 28, 2012 15:54

samra escreveu:Resolva as desigualdades abaixo, escrevendo o conjunto solução das mesmas por meio de intervalos:
a) -4< 5-3x ? 17
eu tentei resolver ela por parte, faz muito tempo que eu estudei isso, não me lembro muito bem como se faz
-4<5-3x
-4-5<-3x
-9 <-3x *(-1)
9>3x
9/3>x
3>x ou x<3

5-3x ? 17
-3x?17-5
-3x?12 *(-1)
3x ? -12
x?-4

ai eu fiz uma reta e marquei a intersecção entre esses dois pontos, ai minha resposta deu:
S={-4? x <3} é assim que se resolve?


Está correto. Mas como a solução deve ser em intervalo, você deveria escrever:

S = [-4, 3)

samra escreveu:Se f(x)=x²+2x-1 e g(x)=2x-3, encontre cada uma das seguintes funções compostas:
a)f o g
b)g o f
c)g o g o g

Não me lembro de como fazê-las, se alguém puder colok uma explicação exemplificando, não precisa resolvê-las, só colok algum jeito que eu consiga entender o que foi feito, assim como fazê-las.


Eu recomendo que você assista a videoaula do Nerckie sobre função composta. O título dela é "Matemática - Aula 7 - Função Composta". Depois tente fazer o exercício. O endereço do canal do Nerckie é:

http://www.youtube.com/nerckie
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D