• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Combinatória-analise combinatoria

Combinatória-analise combinatoria

Mensagempor heloisacarvalho83 » Seg Fev 27, 2012 22:40

De quantas maneiras distintas 20 pessoas podem formar uma fila
se Eric estará entre os primeiros 7 lugares somente se a Ana também
estiver, e vice-versa, sabendo-se que neste caso os lugares deles não
serão consecutivos? Justifique
heloisacarvalho83
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Seg Fev 27, 2012 22:25
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: exatas
Andamento: formado

Re: Combinatória-analise combinatoria

Mensagempor Livia000 » Qua Mai 23, 2012 00:26

Dividir o problema em casos seria uma boa ideia ( em combinatória, é assim quase sempre^^)...
Vamos pensar nos casos em que:

1) Ana e Eric não estão entre os sete primeiros lugares:
Nesse caso, Ana e Eric podem estar em lugares consecutivos. Logo, temos:

[A13,2]x[A18,18]= (13!/11!)x18!= 18!x156 possibilidades...

obs: A[13,2] refere-se ao número de arranjos possíveis, dos 13 últimos lugares, dois a dois, que são o número de lugares em que Ana e Eric podem estar. Uma vez escolhidos esses lugares, temos ainda 18 lugares restantes para serem preenchidos pelas outras 18 pessoas. Isso pode ser feito de 18! maneiras. Usamos "arranjo" porque a ordem das pessoas é importante para computar as possibilidades ( CAB é diferente de ABC ; A,B e C são pessoas).

2) Ana e Eric estão entre os sete primeiros:

Agora, eles não podem estar em lugares consecutivos.
Primeiramente, devemos escolher dois lugares para Ana e Eric, dentre os sete primeiros, o que é igual a:

[A7,2] . Mas, esse arranjo inclui as situações em que A e E estão juntos. Então, devemos subtrair desse valor o número de possibilidades em que eles estão juntos, que é igual a 6 ( você pode chegar a esse valor através do bom e velho método dos "tracinhos" _ _ _ _ _ _ _ ...assim, percebe-se que podemos formar ao todo 6 conjuntos de traços consecutivos). Como a ordem importa, iremos subtrair 12 do arranjo acima.
Logo, vem:

A7,2 -12 = 7!/5! -12 = 30

Depois de escolhidos os lugares para A e E, temos 18! possibilidades para o restante do pessoal.

Logo, teremos 30.18! possibilidades.

Finalmente, somando os dois valores obtidos acima, temos:

30.18! + 156.18! = 18!.186 possibilidades
Livia000
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Qua Fev 08, 2012 16:31
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Estatística

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}