por lendersonfisica » Sex Fev 24, 2012 17:32
]Olá. Boa tarde. Gostaria que alguem me ajuda-se a desenvolver uma explicação bem detalhada da questão a seguir, utilizando as coordenadas polares para analisar a existência do limite no ponto (0,0);

Obrigado Estou aguardando respostas. E tambem tentando desenvolver a questão.
Desde já Grato.
By: Lenderson Francisco Pedro José Souza da Silva
-
lendersonfisica
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Sex Fev 24, 2012 17:04
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Física
- Andamento: cursando
por LuizAquino » Sáb Fev 25, 2012 20:02
lendersonfisica escreveu:Gostaria que alguem me ajuda-se a desenvolver uma explicação bem detalhada da questão a seguir, utilizando as coordenadas polares para analisar a existência do limite no ponto (0,0);

Eu presumo que o limite seja:

Note que você escreveu o símbolo "=" em um local inadequado.
Como você já deve ter feito, primeiro você precisa transferir esse limite para as coordenadas polares. Para isso, basta utilizar

,

e fazer r tender para 0.
Temos então que:

Agora basta escolher dois caminhos para os quais o limite seja distinto.
Escolha por exemplo o caminho tal que os pontos se aproximam de (0, 0) pela reta polar

.
Em seguida, escolha o caminho tal que os pontos se aproximam de (0, 0) pela espiral

.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por lendersonfisica » Dom Fev 26, 2012 11:05
Presumio Corretamente amigo!
Muito obrigado foi de muita ajuda, para intender uma questão que me foi passada para explicar na aula.
-
lendersonfisica
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Sex Fev 24, 2012 17:04
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Física
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Vetores ! Por favor, da forma mais detalhada possível.Grato
por johnatta » Sáb Mai 23, 2015 11:08
- 0 Respostas
- 0 Exibições
- Última mensagem por Visitante

Qua Dez 31, 1969 22:00
Geometria Analítica
-
- Vetores ! Por favor, da forma mais detalhada possível.Grato
por johnatta » Sáb Mai 23, 2015 12:45
- 0 Respostas
- 1084 Exibições
- Última mensagem por johnatta

Sáb Mai 23, 2015 12:45
Geometria Analítica
-
- Limite Continuidade
por Claudin » Sáb Out 01, 2011 11:33
- 10 Respostas
- 5460 Exibições
- Última mensagem por Claudin

Seg Out 03, 2011 10:37
Cálculo: Limites, Derivadas e Integrais
-
- Continuidade Limite
por CaioLemos » Qui Mar 22, 2012 13:18
- 2 Respostas
- 1884 Exibições
- Última mensagem por CaioLemos

Qui Mar 22, 2012 17:39
Cálculo: Limites, Derivadas e Integrais
-
- Limite e Continuidade
por Thyago Quimica » Seg Mai 21, 2012 14:11
- 1 Respostas
- 1561 Exibições
- Última mensagem por LuizAquino

Ter Mai 22, 2012 19:22
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.