• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Torneiras A e B

Torneiras A e B

Mensagempor Cleyson007 » Seg Jun 08, 2009 14:46

Boa tarde!

Penso que o problema abaixo pode ser resolvido montando um sistema de equações. Estou encontrando dificuldade para montar as equações. Alguém pode me ajudar?

--> Com duas torneiras A e B, abertas simultaneamente,
consegue-se encher um tanque de água em 6 minutos.
Encher esse tanque com a torneira A aberta e a torneira
B fechada demora 5 minutos a mais do que com a
torneira A fechada e a torneira B aberta. O tempo necessário
para encher o tanque abrindo apenas a torneira
A é:
A) 15 minutos
B) 15 minutos e 30 segundos
C) 16 minutos
D) 16 minutos e 30 segundos
E) 18 minutos

Agradeço sua ajuda!

Um abraço.

Até mais
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: Torneiras A e B

Mensagempor ginrj » Seg Jun 08, 2009 18:17

puxa achei 2 resultados diferentes, 15 min e 30 segs e 17 min Oo, nao consegui ainda chegar a um resultado preciso, usei sistemas., acredito que no exercicio podia falar os litros que os dois enchem ligados juntos, bom ainda nao cheguei a uma resposta fixa, estou tentando ainda ^^, em breve respondo se possivel com a resolução para ajudar o amigo
Os números governam o Universo
ginrj
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 37
Registrado em: Sex Mar 06, 2009 18:28
Localização: Rio de Janeiro
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Pré.Militar
Andamento: cursando

Re: Torneiras A e B

Mensagempor Marcampucio » Seg Jun 08, 2009 19:14

As vazões das torneiras são

V_b=\frac{Q}{t}

V_a=\frac{Q}{t+5}

V_a+V_b=\frac{Q}{6}

onde Q é a capacidade do reservatório

\frac{Q}{t}+\frac{Q}{t+5}=\frac{Q}{6}

simplifica por Q e calcula t o tempo de A é t+5
A revelação não acontece ao encontrar o sábio no alto da montanha. A revelação vem com a subida da montanha.
Marcampucio
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 180
Registrado em: Ter Mar 10, 2009 17:48
Localização: São Paulo
Formação Escolar: GRADUAÇÃO
Área/Curso: geologia
Andamento: formado

Re: Torneiras A e B

Mensagempor ginrj » Seg Jun 08, 2009 20:28

compreendi seu raciocinio, tambem estou nessa so que dei nomes diferentes, mais nao consigo passar disso
Os números governam o Universo
ginrj
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 37
Registrado em: Sex Mar 06, 2009 18:28
Localização: Rio de Janeiro
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Pré.Militar
Andamento: cursando

Re: Torneiras A e B

Mensagempor Marcampucio » Seg Jun 08, 2009 22:06

\\\frac{1}{t}+\frac{1}{t+5}=\frac{1}{6}\\\frac{t+5+t}{t(t+5)}=\frac{1}{6}

\\12t+30=t^2+5t\\t^2-7t-30=0

\begin{cases}t=10\\t=-3\end{cases}

só tem sentido o tempo positivo, portanto t=10min o tempo para a torneira A sozinha é t+5=15min
A revelação não acontece ao encontrar o sábio no alto da montanha. A revelação vem com a subida da montanha.
Marcampucio
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 180
Registrado em: Ter Mar 10, 2009 17:48
Localização: São Paulo
Formação Escolar: GRADUAÇÃO
Área/Curso: geologia
Andamento: formado

Re: Torneiras A e B

Mensagempor Cleyson007 » Ter Jun 09, 2009 13:10

Boa tarde Marcampucio e Ginrj!

Como já disse, a dúvida era justamente em montar as equações.

Compreendi o processo de resolução :-D

Obrigado pela ajuda.

Se precisarem de algo, e for do meu alcance, podem contar com minha ajuda. :-O

Um abraço.

Até mais.
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: Torneiras A e B

Mensagempor ginrj » Ter Jun 09, 2009 16:52

^^ consegui tbm, compreendi o raciocinio do amigo, show de bola essa questao
Os números governam o Universo
ginrj
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 37
Registrado em: Sex Mar 06, 2009 18:28
Localização: Rio de Janeiro
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Pré.Militar
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?