• Anúncio Global
    Respostas
    Exibições
    Última mensagem

geoemtria espacial

geoemtria espacial

Mensagempor silvia fillet » Sex Fev 17, 2012 14:12

Um cone de geratriz medindo tres raiz quadrada de 5 cm está inscrito em um cilindro cuja área da seção meridiana é igual a 20 raiz quadrada de 5 cm2. Determine a medida do raio da base do cone.
silvia fillet
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 89
Registrado em: Qua Out 12, 2011 21:07
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matematica
Andamento: formado

Re: geoemtria espacial

Mensagempor MarceloFantini » Sex Fev 17, 2012 14:18

Quais foram suas tentativas?
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: geoemtria espacial

Mensagempor MickaelSantos » Ter Fev 21, 2012 21:00

Ajude me nesse também, Marcelo...

Para a secção meridiana do cilindro, pensei assim:
2r.h=20\sqrt{5} \Leftrightarrow h=\frac{10.\sqrt{5}}{r}

E para o cone, pensei assim (por Pitágoras):
(3.\sqrt{5})^2=h^2+r^2 \Leftrightarrow 45=h^2+r^2

Substituindo a altura calculada anteriormente, temos:
45=(\frac{10.\sqrt{5}}{r})^2+r^2 \Leftrightarrow 45=\frac{500}{r^2}+r^2 \Rightarrow r^4-45r^2+500=0

Resolvendo tenho que:
r=5 ou r=2\sqrt{5}

E que:
h=2\sqrt{5} ou h=5

Ou seja:
Se r=5 \Rightarrow h=2\sqrt{5}

E:
Se r=2\sqrt{5} \Rightarrow h=5

Nesse caso as duas estão corretas, ou apenas uma delas. Se for só uma, qual???

Obrigado...
Professor de Matemática
Avatar do usuário
MickaelSantos
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Ter Fev 21, 2012 19:10
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: geoemtria espacial

Mensagempor MarceloFantini » Ter Fev 21, 2012 21:34

Acredito que ambas estejam certas.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Geometria Espacial

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.