• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Prova por Indução (Soma de Progressão)

Prova por Indução (Soma de Progressão)

Mensagempor RicardoSouza » Sex Fev 17, 2012 20:30

Como eu poderia provar por indução, PARA N+1, que S_n =a_1\cdot\dfrac{q^{n}-1}{q-1} + r\cdot\dfrac{q^{n}-1}{(q-1)^2} + r\cdot\dfrac{n}{1-q}?

Desde já, grato.
Editado pela última vez por RicardoSouza em Sáb Fev 18, 2012 21:42, em um total de 1 vez.
RicardoSouza
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Sex Fev 17, 2012 15:03
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Prova por Indução (Soma de Progressão)

Mensagempor nietzsche » Sáb Fev 18, 2012 01:11

(q-1)^2 não é igual a

q - 2q + 1, mas

(q - 1)^2 = (q-1)(q-1) = q^2 -q - q +1 = q^2 -2q+1.

q é diferente de 1, então vc pode simplificar esse termo, não precisa abrir a expressão.
nietzsche
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 99
Registrado em: Qua Jan 12, 2011 14:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Prova por Indução (Soma de Progressão)

Mensagempor RicardoSouza » Sáb Fev 18, 2012 16:25

nietzsche escreveu:(q-1)^2 não é igual a

q - 2q + 1, mas

(q - 1)^2 = (q-1)(q-1) = q^2 -q - q +1 = q^2 -2q+1.

q é diferente de 1, então vc pode simplificar esse termo, não precisa abrir a expressão.



Ok, Muito Obrigado. Esqueci de elevar ao quadrado quando fui digitar em Tex.
Perdoe minha ignorância, mas tenho que chegar à S_n = a_1\cdot\dfrac{(q^{n}-1)}{q-1},(fórmula da soma dos termos de uma PG), para provar para n=1?

E ainda, se eu quiser provar a validade para n+1, como procedo? Que dados devo utilizar além da hipótese? Poderia desenvolver um início com esses dados, para que eu possa ter uma noção de como desenvolver a prova?

Desculpe-me pelo incômodo.
RicardoSouza
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Sex Fev 17, 2012 15:03
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Prova por Indução (Soma de Progressão)

Mensagempor Victor Neumann » Sex Fev 24, 2012 05:44

Victor Neumann
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qui Fev 23, 2012 21:37
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado

Re: Prova por Indução (Soma de Progressão)

Mensagempor nietzsche » Sex Mar 02, 2012 03:11

Ricardo Souza,

para n=1, você deve verificar a validade da expressão que você está querendo provar. No seu caso está faltando dados no enunciado. Se você substituir n por 1, você obtém uma fórmula a expressão de S1. Dê uma olhada em http://ecalculo.if.usp.br/ferramentas/pif/pif.htm pra você entender os passos pra se provar por indução. Também tem alguns exercícios resolvidos.
nietzsche
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 99
Registrado em: Qua Jan 12, 2011 14:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando


Voltar para Progressões

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}