• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Equações paramétricas da curva

Equações paramétricas da curva

Mensagempor kalschne » Qui Fev 16, 2012 20:51

Estou quebrando a cabeça em um exercício que meu professor de Cálculo vetorial passou na sala, to precisando de ajuda:

Suponha que uma circunferência tenha raio "a" e o eixo x seja a reta fixa sobre a qual essa circunferência gira. Considere o ponto p na origem quando o centro da circunferência está em (0,a). Determine as equações paramétricas da curva C descrito por este ponto p quando a circunferência gira sobre o eixo.

Eu consigo imaginar o gráfico, mas não estou conseguindo achar as equações paramétricas dessa curva. Alguém me da uma ajuda ai =D
kalschne
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qui Fev 16, 2012 20:38
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Mecânica
Andamento: cursando

Re: Equações paramétricas da curva

Mensagempor fraol » Qui Fev 16, 2012 22:17

Os links http://www.lem.xpg.com.br/Cicloide/cicloide.htm ou este http://www.ime.uerj.br/~calculo/LivroIII/curvas.pdf na seção 2.5.1 podem ajudar a entender o movimento e descrever as equações dos pontos da curva.
fraol
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 392
Registrado em: Dom Dez 11, 2011 20:08
Localização: Mogi das Cruzes-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado

Re: Equações paramétricas da curva

Mensagempor MarceloFantini » Qui Fev 16, 2012 22:18

Eu consegui parametrizar para uma volta completa, note que a curva descrita será uma circunferência com centro em (2a, 0) e raio 2a, daí

f(t) = (x(t),y(t)) onde x(t) = 2a \left(1 - \cos \frac{t}{2} \right) e y(t) = 2a \, \textrm{sen} \, \frac{t}{2} para 0 \leq t \leq 2pi.

Cada volta completa será dessa forma, mas não sei condensar (se é possível) qualquer volta em uma única equação.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Equações paramétricas da curva

Mensagempor kalschne » Qui Fev 16, 2012 22:48

Valeu, consegui entender =)
kalschne
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qui Fev 16, 2012 20:38
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Mecânica
Andamento: cursando


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.