• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Matriz

Matriz

Mensagempor Claudin » Qui Fev 16, 2012 19:12

Classifique entre Verdadeira e Falsa. (Se verdadeira, prove; se falsa, prove ou dê um contra-exemplo)
(c) Se {A}^{t}={A}^{-1} então det(A) = 1
Resolução:

Verdadeiro

No caso, o único exemplo seria a matriz Identidade
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Matriz

Mensagempor MarceloFantini » Qui Fev 16, 2012 21:10

Falso, podemos ter \det A = -1. Note que \det A \cdot \det A^t = \det A \cdot \det A = (\det A)^2 = 1, daí \det A = 1 ou \det A = -1. A matriz identidade não é o único exemplo, considere

A = \begin{bmatrix} \cos x & - \textrm{sen} \, x \\ \textrm{sen} \, x & \cos x \end{bmatrix}.

Então A^t = \begin{bmatrix} \cos x & \textrm{sen} \, x \\ - \textrm{sen} \, x & \cos x \end{bmatrix} e daí

A^t \cdot A = \begin{bmatrix} \cos x & \textrm{sen} \, x \\ - \textrm{sen} \, x & \cos x \end{bmatrix} \cdot \begin{bmatrix} \cos x & - \textrm{sen} \, x \\ \textrm{sen} \, x & \cos x \end{bmatrix} = I_{2 \times 2} = A \cdot A^t.

Note que A não é a identidade. Estas matrizes são especiais: é o grupo das matrizes ortogonais, ou seja, tal que A^t \cdot A = A \cdot A^t = I e como consequência |\det A| = 1.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Matriz

Mensagempor Claudin » Qui Fev 16, 2012 22:34

Problema é pensar nesse exemplo
Isso é quase impossível
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Matriz

Mensagempor MarceloFantini » Qui Fev 16, 2012 22:38

De fato saber que este é um exemplo é complicado, mas o argumento do determinante independe disso e é o raciocínio esperado.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Matriz

Mensagempor Claudin » Sáb Fev 25, 2012 20:25

:y:
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Matrizes e Determinantes

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 10:38

Olá ! Tenho essa dúvida e não consigo montar o problema para resolução:

Qual é o racional não nulo cujo o quadrado é igual à sua terça parte ?

Grata.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 12:27

x^2 = \frac{x}{3}


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 12:55

também pensei que fosse assim, mas a resposta é \frac{1}{3}.

Obrigada Fantini.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 13:01

x^2 = \frac{x}{3} \Rightarrow x^2 - \frac{x}{3} = 0 \Rightarrow x \left(x - \frac{1}{3} \right) = 0

Como x \neq 0:

x - \frac{1}{3} = 0 \Rightarrow x = \frac{1}{3}

O que você fez?


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 16:17

eu só consegui fazer a igualdade, não consegui desenvolver o restante, não pensei em fatoração, mas agora entendi o que vc fez.

Obrigada.