• Anúncio Global
    Respostas
    Exibições
    Última mensagem

duvida

duvida

Mensagempor ivanilda » Qua Fev 15, 2012 10:45

Bom dia, meu nome e Ivanilda, gostaria de saber como faço para participar de um topico de geometria plana e espacial, para mim aparece como indisponivel para meu usuario.
ivanilda
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Seg Dez 05, 2011 23:14
Formação Escolar: GRADUAÇÃO
Área/Curso: matematica
Andamento: formado

Re: duvida

Mensagempor LuizAquino » Qua Fev 15, 2012 19:03

ivanilda escreveu:Bom dia, meu nome e Ivanilda, gostaria de saber como faço para participar de um topico de geometria plana e espacial, para mim aparece como indisponivel para meu usuario.


Qual seria o tópico? Por favor, informe o link para ele.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: duvida

Mensagempor ivanilda » Qui Fev 16, 2012 10:42

LuizAquino escreveu:
ivanilda escreveu:Bom dia, meu nome e Ivanilda, gostaria de saber como faço para participar de um topico de geometria plana e espacial, para mim aparece como indisponivel para meu usuario.


Qual seria o tópico? Por favor, informe o link para ele.

Bm dia Luiz, o topico fala do uso de malhas quadriculadas na investgacao de areas de figuras geometricas.
ivanilda
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Seg Dez 05, 2011 23:14
Formação Escolar: GRADUAÇÃO
Área/Curso: matematica
Andamento: formado

Re: duvida

Mensagempor MarceloFantini » Qui Fev 16, 2012 16:32

Ivanilda, o que o Luiz quis dizer foi informar o endereço para que possamos ver o tópico, como por exemplo o deste:

viewtopic.php?f=118&t=7182
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: duvida

Mensagempor ivanilda » Sex Fev 17, 2012 00:25

(geometria plana e espacial) uso de malhas quadriculadas , seria isto??? como faco para escrever/ identificar um topico???
ivanilda
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Seg Dez 05, 2011 23:14
Formação Escolar: GRADUAÇÃO
Área/Curso: matematica
Andamento: formado

Re: duvida

Mensagempor LuizAquino » Sex Fev 17, 2012 10:09

ivanilda escreveu:(geometria plana e espacial) uso de malhas quadriculadas , seria isto??? como faco para escrever/ identificar um topico???


1) Posicione o ponteiro ("setinha") do mouse em cima do título do tópico desejado;
2) Clique com o botão direito do mouse; Um menu irá aparecer;
3) No menu que apareceu, escolha a opção "Copiar link" (ou algo parecido);
4) Agora vá até a mensagem onde você deseja copiar o link e pressione ao mesmo tempo as teclas "CTRL" e "C" do seu teclado;
5) Pronto! Com isso você informou o endereço ("link") do tópico desejado.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: duvida

Mensagempor Prof » Sex Fev 17, 2012 16:37

Também gostaria de participar do tópico relativo a geometria espacial, mas tbm consta como indisponível pra mim.
viewtopic.php?f=118&t=7208
Prof
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qui Fev 16, 2012 19:14
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: matemática
Andamento: cursando

Re: duvida

Mensagempor LuizAquino » Sex Fev 17, 2012 19:27

Prof escreveu:Também gostaria de participar do tópico relativo a geometria espacial, mas tbm consta como indisponível pra mim.


Então vocês desejam acessar o tópico:

viewtopic.php?f=118&t=7208

Esse tópico estava na seção "Lixeira" desse fórum. Essa seção é apenas para moderadores do site, por isso que vocês não estavam conseguindo postar mensagens nela.

Eu já transferi o tópico desejado para a seção Geometria Espacial. Tentem acessá-lo agora.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Geometria Espacial

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D