por Giu » Qua Fev 15, 2012 06:09
Olá,
Tenho um problema aqui para resolver:
Use a aproximação linear de
![\sqrt[3]{x} \sqrt[3]{x}](/latexrender/pictures/6833f4eaccfb60d5c13fdf6b6cc30aef.png)
ao redor de x=8 para calcular um valor aproximado para
![\sqrt[3]{9} \sqrt[3]{9}](/latexrender/pictures/32fa931f3d4f8b1110acfdbbe9d2b6d2.png)
. Dê uma estimativa do erro cometido.
esse é o problema, eu tentei fazer mas não deu certo, usei a formula L(x) = f(xo) + f´(xo)(x-xo) , mas acho q fiz errado, como poderia proceder nesse caso!
Giu
-
Giu
- Novo Usuário

-
- Mensagens: 7
- Registrado em: Qua Fev 08, 2012 15:38
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Quimica Licenciatura
- Andamento: cursando
por LuizAquino » Qua Fev 15, 2012 18:26
Giu escreveu:Use a aproximação linear de
![\sqrt[3]{x} \sqrt[3]{x}](/latexrender/pictures/6833f4eaccfb60d5c13fdf6b6cc30aef.png)
ao redor de x=8 para calcular um valor aproximado para
![\sqrt[3]{9} \sqrt[3]{9}](/latexrender/pictures/32fa931f3d4f8b1110acfdbbe9d2b6d2.png)
. Dê uma estimativa do erro cometido.
Giu escreveu:esse é o problema, eu tentei fazer mas não deu certo, usei a formula L(x) = f(xo) + f´(xo)(x-xo) , mas acho q fiz errado, como poderia proceder nesse caso!
Você deve usar essa fórmula mesmo. Por favor, envie a sua resolução para que possamos corrigir o seu erro.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Aproximação linear
por joaopaulo_ » Sáb Jun 23, 2012 16:59
- 2 Respostas
- 2737 Exibições
- Última mensagem por joaopaulo_

Dom Jun 24, 2012 11:28
Cálculo: Limites, Derivadas e Integrais
-
- Aproximação Linear
por RonnieAlmeida » Sex Mai 23, 2014 00:18
- 0 Respostas
- 1657 Exibições
- Última mensagem por RonnieAlmeida

Sex Mai 23, 2014 00:18
Cálculo: Limites, Derivadas e Integrais
-
- Aproximação linear
por leandrocalixto » Ter Out 04, 2016 15:33
- 0 Respostas
- 1944 Exibições
- Última mensagem por leandrocalixto

Ter Out 04, 2016 15:33
Cálculo: Limites, Derivadas e Integrais
-
- Cálculo 1 - Aproximação Linear
por samra » Qua Jun 13, 2012 22:03
- 0 Respostas
- 1856 Exibições
- Última mensagem por samra

Qua Jun 13, 2012 22:03
Cálculo: Limites, Derivadas e Integrais
-
- Aproximação
por Thais Aquino Lima » Qui Fev 28, 2013 19:28
- 1 Respostas
- 1318 Exibições
- Última mensagem por Cleyson007

Sex Mar 01, 2013 09:13
Aritmética
Usuários navegando neste fórum: Nenhum usuário registrado e 9 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.