• Anúncio Global
    Respostas
    Exibições
    Última mensagem

sequencias e progressões

sequencias e progressões

Mensagempor Rosana Vieira » Dom Fev 12, 2012 23:00

. Um dos maiores problemas das plantações brasileiras é a FERRUGEM. O grau de severidade dessa doença é dada pela área da lesão apresentada na folhas. Suponhamos que em um dado momento uma folha tenha 15% da área de uma folha lesionada, e que essa lesão cresça a uma taxa de 10% por semana, então:


Do/Mo=0,15



a Faça uma estimativa da área lesionada daqui a 10 semanas, supondo que nesse período a área da folha permaneça constante;


b Qual é a área lesionada em 10 semanas sabendo que a área da floresta cresça a uma taxa de 8% por semana? Sabendo que quando a a área lesionada atinge a 30% da área da folha, a plantação tem que ser exterminada. Então em quanto tempo isso aconteceria?



2. Em uma casa de campo existem, ao longo da cerca, uma torneira e 18 roseiras. A torneira está a 15 m da primeira roseira e o espaço entre as roseiras é de 1m. O jardineiro tem apenas um balde. Ele enche o balde na torneira, rega a primeira roseira, volta para encher o balde, rega a segunda roseira, e assim por diante. Após regar a décima oitava (18ª) roseira ele retorna para deixar o balde junto à torneira. Qual o termo geral dessa PA, e qual foi a distância total percorrida pelo jardineiro?

3. Os números x, y, z formam, nesta ordem, uma P.A. de soma 15. Por outro lado, os números x, y + 1, z + 5 formam, nesta ordem, uma P.G. de soma 21. Sendo 0 < x < 10 então o valor de 3z é:
Gostaria de saber se alguém conseguiu resolver para conferir os resltados
Rosana Vieira
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 74
Registrado em: Qui Nov 17, 2011 00:11
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: sequencias e progressões

Mensagempor Miriam » Seg Fev 13, 2012 21:28

Olá!

a) Verifique que a area lesionada em 10 semanas é a PG (0,15; 0,165; 0,1815; ...), daí a10=0,35369, ou seja, a area será aproximadamente 35,37%.
b) ??? também preciso de ajuda.

3.Determine a razão da PA e iguale os valores; isole z. Substitua z na soma dos termos da PA, você encontrará y=5; determine a razão da PG e iguale os valores, em seguida substitua y, você encontrará z+5=36/x. Usando a soma dos termos da PG e simplificando o polinomio de grau 3, chegamos numa equação de grau 2, na variavel x, e x=12 (invalido pelo enunciado) e x=3. Dai, substitui e encontra z=7. Então, 3z=21.

Se alguem encontrar valores diferentes, por favor, publique!
Miriam
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Ter Out 25, 2011 20:57
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Licenciatura em Matemática
Andamento: formado

Re: sequencias e progressões

Mensagempor Rosana Vieira » Ter Fev 14, 2012 23:56

Miriam gostaria de saber que fórmula vc usou
Vc pode me ajudar
Rosana Vieira
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 74
Registrado em: Qui Nov 17, 2011 00:11
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando


Voltar para Sequências

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.