• Anúncio Global
    Respostas
    Exibições
    Última mensagem

numeros comlpexos,ajuda urgentissima

numeros comlpexos,ajuda urgentissima

Mensagempor muxapore » Dom Fev 05, 2012 12:55

achei essa pergunta em uma tarefa mas não consegui resolve-la.

ela é assim

Considere o número complexo . \eta = \dfrac{1+\sqrt{5}}{4} + i \dfrac{\sqrt{10-2\sqrt{5}}}{4}.
(a) Prove que |\eta | = 1.

(b) Prove que \eta^2 = \dfrac{-1+\sqrt{5}}{4} + i \dfrac{\sqrt{10+2\sqrt{5}}}{4}.
e como Dica eu tenho: (1+\sqrt{5}) \sqrt{\left(10-2\sqrt{5}\right)} = \sqrt{\left(1+\sqrt{5} \right)^2 \left(10-2\sqrt{5}\right)}.
muxapore
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Dom Fev 05, 2012 12:41
Formação Escolar: ENSINO FUNDAMENTAL II
Andamento: cursando

Re: numeros comlpexos,ajuda urgentissima

Mensagempor fraol » Ter Fev 07, 2012 11:20

Os dois problemas são basicamente a aplicação de definições relacionadas aos números complexos, o segundo envolve um desenvolvimento algébrico um pouquinho mais elaborado. Nada muito complexo.

muxapore escreveu:
Considere o número complexo . \eta = \dfrac{1+\sqrt{5}}{4} + i \dfrac{\sqrt{10-2\sqrt{5}}}{4}.


Em geral todo número complexo é da forma algébrica z = a + bi. Onde a é chamado de parte real do número complexo e b é chamado de parte imaginária do numero complexo. No seu caso temos \eta = a + bi . Qual é o a e qual é o b nesse número?

(a) Prove que |\eta | = 1.


O módulo de um número complexo é a sua distância à origem, no plano, e é dado pela fórmula |\eta | = \sqrt{a^2 + b^2} . É só você substituir e fazer as contas.

(b) Prove que \eta^2 = \dfrac{-1+\sqrt{5}}{4} + i \dfrac{\sqrt{10+2\sqrt{5}}}{4}.
e como Dica eu tenho: (1+\sqrt{5}) \sqrt{\left(10-2\sqrt{5}\right)} = \sqrt{\left(1+\sqrt{5} \right)^2 \left(10-2\sqrt{5}\right)}.


Aqui você pode desenvolber assim \eta^2 = (a + bi)^2 = (a +bi)(a + bi) = a^2 -b^2 + 2abi ( a^2 e b^2 você já calculou no item a, lembrar também que i^2 = -1 ). Basta então substituir, usar a dica e fazer as contas. Salvo algum probleminha de sinal, você deverá chegar ao resultado.
fraol
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 392
Registrado em: Dom Dez 11, 2011 20:08
Localização: Mogi das Cruzes-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado


Voltar para Números Complexos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}