• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Limites] analisando os métodos

[Limites] analisando os métodos

Mensagempor Ana_Rodrigues » Qui Fev 02, 2012 18:20

A questão pede pra encontrar um número \delta tal que:

Se \left|x-\frac{\pi}{4} \right|<\delta

então \left|tgx - 1 \right|<0,2


Porque quando eu faço:

tgx -1<0,2
tgx<1,2
x<{tg}^{-1}1,2
x<50,194

Transformando o valor em graus para radianos temos:
x<0,876

\left|0,876 -\frac{\pi}{4} \right|<0,0906

A resposta está correta!


Mas quando eu faço:

tgx-1<0,2
tg(x-\frac{\pi}{4})<0,2
\left|x-\frac{\pi}{4} \right|<{tg}^{-1}0,2
\left|x-\frac{\pi}{4} \right|<11,3

Transformando de graus para radianos...

\left|x-\frac{\pi}{4} \right|<0,197

O resultado é incorreto!


Eu gostaria de saber por que? Não era pra dar o mesmo resultado que o primeiro método?
Ana_Rodrigues
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 51
Registrado em: Seg Nov 14, 2011 09:44
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Limites] analisando os métodos

Mensagempor LuizAquino » Qui Fev 02, 2012 18:58

Ana_Rodrigues escreveu:\textrm{tg}\,x-1<0,2

\textrm{tg}\,\left(x-\frac{\pi}{4}\right)<0,2

(...)

O resultado é incorreto!

Eu gostaria de saber por que? Não era pra dar o mesmo resultado que o primeiro método?


Ao executar esse passo você está cometendo o erro de achar que \textrm{tg}\,(a-b) é igual a \textrm{tg}\,a - \textrm{tg}\,b .

Exemplo

(i) \textrm{tg}\,(60^\circ-30^\circ) = \textrm{tg}\, 30^\circ = \frac{\sqrt{3}}{3}

(ii) \textrm{tg}\,60^\circ-\textrm{tg}\,30^\circ =  \sqrt{3} -\frac{\sqrt{3}}{3} = \frac{2\sqrt{3}}{3}

Note que \textrm{tg}\,(60^\circ-30^\circ) \neq \textrm{tg}\,60^\circ-\textrm{tg}\,30^\circ .

Além disso, a resolução adequada seria a seguinte.

|\textrm{tg}\,x - 1| < 0,2

-0,2 < \textrm{tg}\,x - 1 < 0,2

0,8 < \textrm{tg}\,x  < 1,2

\textrm{tg}^{-1}\,0,8 < x  < \textrm{tg}^{-1}\,1,2

0,674 < x < 0,876

0,674 -\frac{\pi}{4} < x - \frac{\pi}{4}< 0,876 - \frac{\pi}{4}

-0,1113 < x - \frac{\pi}{4} < 0,0906

Reduzindo um pouco o intervalo (pois -0,1113 < -0,0906), ficamos com:

-0,0906 < x - \frac{\pi}{4} < 0,0906

\left|x - \frac{\pi}{4}\right| < 0,0906

Vale lembrar que isso é uma aproximação, já que todos os cálculos foram realizados com arredondamento.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: [Limites] analisando os métodos

Mensagempor Ana_Rodrigues » Sex Fev 03, 2012 15:06

Obrigada!
Ana_Rodrigues
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 51
Registrado em: Seg Nov 14, 2011 09:44
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.