• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Limites] analisando os métodos

[Limites] analisando os métodos

Mensagempor Ana_Rodrigues » Qui Fev 02, 2012 18:20

A questão pede pra encontrar um número \delta tal que:

Se \left|x-\frac{\pi}{4} \right|<\delta

então \left|tgx - 1 \right|<0,2


Porque quando eu faço:

tgx -1<0,2
tgx<1,2
x<{tg}^{-1}1,2
x<50,194

Transformando o valor em graus para radianos temos:
x<0,876

\left|0,876 -\frac{\pi}{4} \right|<0,0906

A resposta está correta!


Mas quando eu faço:

tgx-1<0,2
tg(x-\frac{\pi}{4})<0,2
\left|x-\frac{\pi}{4} \right|<{tg}^{-1}0,2
\left|x-\frac{\pi}{4} \right|<11,3

Transformando de graus para radianos...

\left|x-\frac{\pi}{4} \right|<0,197

O resultado é incorreto!


Eu gostaria de saber por que? Não era pra dar o mesmo resultado que o primeiro método?
Ana_Rodrigues
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 51
Registrado em: Seg Nov 14, 2011 09:44
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Limites] analisando os métodos

Mensagempor LuizAquino » Qui Fev 02, 2012 18:58

Ana_Rodrigues escreveu:\textrm{tg}\,x-1<0,2

\textrm{tg}\,\left(x-\frac{\pi}{4}\right)<0,2

(...)

O resultado é incorreto!

Eu gostaria de saber por que? Não era pra dar o mesmo resultado que o primeiro método?


Ao executar esse passo você está cometendo o erro de achar que \textrm{tg}\,(a-b) é igual a \textrm{tg}\,a - \textrm{tg}\,b .

Exemplo

(i) \textrm{tg}\,(60^\circ-30^\circ) = \textrm{tg}\, 30^\circ = \frac{\sqrt{3}}{3}

(ii) \textrm{tg}\,60^\circ-\textrm{tg}\,30^\circ =  \sqrt{3} -\frac{\sqrt{3}}{3} = \frac{2\sqrt{3}}{3}

Note que \textrm{tg}\,(60^\circ-30^\circ) \neq \textrm{tg}\,60^\circ-\textrm{tg}\,30^\circ .

Além disso, a resolução adequada seria a seguinte.

|\textrm{tg}\,x - 1| < 0,2

-0,2 < \textrm{tg}\,x - 1 < 0,2

0,8 < \textrm{tg}\,x  < 1,2

\textrm{tg}^{-1}\,0,8 < x  < \textrm{tg}^{-1}\,1,2

0,674 < x < 0,876

0,674 -\frac{\pi}{4} < x - \frac{\pi}{4}< 0,876 - \frac{\pi}{4}

-0,1113 < x - \frac{\pi}{4} < 0,0906

Reduzindo um pouco o intervalo (pois -0,1113 < -0,0906), ficamos com:

-0,0906 < x - \frac{\pi}{4} < 0,0906

\left|x - \frac{\pi}{4}\right| < 0,0906

Vale lembrar que isso é uma aproximação, já que todos os cálculos foram realizados com arredondamento.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: [Limites] analisando os métodos

Mensagempor Ana_Rodrigues » Sex Fev 03, 2012 15:06

Obrigada!
Ana_Rodrigues
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 51
Registrado em: Seg Nov 14, 2011 09:44
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.