• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Limites] - Questões teóricas 2

[Limites] - Questões teóricas 2

Mensagempor Scheu » Sex Fev 03, 2012 00:32

Desculpem postar uma nova pegunta, mas é que essas questões estão tirando meu sono. Nos exercícios que estou estudando tem a seguinte questão: Demostre que \lim_{x\rightarrow a}\left[f(x)+g(x) \right] pode existir, mesmo que \lim_{x\rightarrow a}f(x) e \lim_{x\rightarrow a}g(x) não existam. Minha duvida esta se essa preposição é realmente verdadeira? Por quê? Mais uma vez obrigada.
Scheu
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Qua Fev 01, 2012 23:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciências Contábeis
Andamento: cursando

Re: [Limites] - Questões teóricas 2

Mensagempor LuizAquino » Sex Fev 03, 2012 00:58

Scheu escreveu:Nos exercícios que estou estudando tem a seguinte questão: Demostre que \lim_{x\rightarrow a}\left[f(x)+g(x) \right] pode existir, mesmo que \lim_{x\rightarrow a}f(x) e \lim_{x\rightarrow a}g(x) não existam. Minha duvida esta se essa preposição é realmente verdadeira? Por quê?


Em alguns casos a resposta é sim: o limite dessa soma pode existir mesmo que o limite de cada parcela não exista.

Exemplo

Considere as funções:

f(x) = \begin{cases} -1,\textrm{ se }x < 0 \\ 1,\textrm{ se }x \geq 0 \end{cases}

g(x) = \begin{cases} 3,\textrm{ se }x < 0 \\ 1,\textrm{ se }x \geq 0 \end{cases}

Note que \lim_{x\to 0} f(x) e \lim_{x\to 0}g(x) não existem (já que os seus limites laterais são distintos).

Por outro lado, temos que:

\lim_{x\to 0} [f(x) + g(x)] = \lim_{x\to 0} 2 = 2

Portanto, obtemos que \lim_{x\to 0} [f(x) + g(x)] existe.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}