• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Limites] - Questões teoricas

[Limites] - Questões teoricas

Mensagempor Scheu » Sex Fev 03, 2012 00:16

Ola mais uma vez! Continuando meus estudos sobre limites esbarrei na seguinte questão:Se \lim_{x\rightarrow a}f(x) existe, então f está definida em x=a. A resposta que apareçe para tal questão é que essa afirmativa é falsa, contudo não consegui entender o porque dela ser falsa. Se possível exemplifique/explique o porquê. desde ja agradeço.

Scheila Borges
Scheu
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Qua Fev 01, 2012 23:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciências Contábeis
Andamento: cursando

Re: [Limites] - Questões teoricas

Mensagempor LuizAquino » Sex Fev 03, 2012 00:38

Scheu escreveu:Ola mais uma vez! Continuando meus estudos sobre limites esbarrei na seguinte questão: Se \lim_{x\to a}f(x) existe, então f está definida em x=a. A resposta que apareçe para tal questão é que essa afirmativa é falsa, contudo não consegui entender o porque dela ser falsa. Se possível exemplifique/explique o porquê. desde ja agradeço.


Considere a função f(x)=\frac{x^2-9}{x-3} .

Nitidamente essa função não está definida em x = 3, pois para esse valor o denominador é zero e isso não pode ocorrer.

Vejamos agora o limite dessa função quando x tende a 3:

\lim_{x\to 3} \frac{x^2-9}{x-3} = \lim_{x\to 3} \frac{x^2-3^2}{x-3}

= \lim_{x\to 3} \frac{(x-3)(x+3)}{x-3}

= \lim_{x\to 3} x+3

= 3 + 3 = 6

Portanto, temos que \lim_{x\to 3}f(x) existe (e é igual a 6), entretanto a função não está definida em x = 3.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: