• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Volume de uma piramide hexagonal

Volume de uma piramide hexagonal

Mensagempor joserd » Qua Jan 25, 2012 20:24

Ola pessoal ja consegui fazer a demonstração da fórmula usando integrais para uma piramide de base quadrada, mas estou empacando na resolução de deduzir a fórmula para o volume de uma piramide de altura h e base sendo um hexágono regular de lado r.Me ajudem por favor preciso com urgencia
joserd
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Sex Set 16, 2011 20:57
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: analise
Andamento: formado

Re: Volume de uma piramide hexagonal

Mensagempor TheoFerraz » Qua Jan 25, 2012 21:03

façamos o seguinte... pense na sua piramide posicionada com a base no eixo Oxy e a ponta indo pelo eixo Oz... tudo bem até agora?

agora vamos integrar... quero integrar minúsculas fatias de volume para obter um volume final... Logo, quero:

{V}_{total} = \int_{}^{} dv

Le-se então: "o volume total é a soma de infinitos pequenos volumes infinitesimais"
(OBS: como pode ver, eu sou estudante de física... os matemáticos provavelmente dirão que eu estou estuprando a matemática... =X mas só estou sendo pratico)

muito simples... agora vamos definir essas tais fatias infinitesimais de volume! quero que voce imagine que estou fatiando a piramide em farias paralelas ao eixo Oxy, tudo bem?

Vou fazer uma simplificação. Pense que, já que são fatias infinitesimalmente pequenas... a figura da fatia, que seria um "tronco de piramide" é, para todos os fins praticos, um paralelepipedo! (matemáticos, respirem fundo, esse é o jeito físico de resolver problemas!)

o que temos então... esse volume infinitesimal que eu estou chamando de dv pode ser escrito em função duma altura infinitesmial, que seria a altura da fatia!!

dv = (\frac{3}{2}  \sqrt{3} {r}^{2}) \times dh

esse R é o tamanho do lado de cada hexagono de cada fatia... é variável conforme as fatias.
perceba que conforme eu vou 'fatiando', conforme cada fatia, esse 'r' muda!
se eu conseguir um jeito de escreve-lo mudando EM FUNÇÂO DE h, eu resolvo o problema!

e é possivel! voce pode, se pensar num corte vertical da piramide, ver que

r(h) = \frac{R}{H} (H-h) \times h

sendo R e H as medidas dadas no enunciado.

Falta só uma coisa agora... os limites de integração!
eu estou cortando as fatias conforme a altura da piramide! minhas fatias deverão variar de 0 até H... compreende? Vou cortar ao longo da altura, desde o pto 0 até ter completado toda a reta...
(admito que essa explicação pode estar meio acoxambrada, me desculpe, mas fica realmente dificil da-la sem uma lousa =X)

por fim

\int_{0}^{H} \frac{3 \: \sqrt{3}}{2} \times { \frac{R(H-h)}{H}}^{2} dh

Eis o 'jeito físico' de fazer a matemática...

por favor, desculpe-me de qualquer acoxambramento e qualquer possivel erro =X

Caso algum matemático queira complementar com a resolução mais formal....

obrigado.
Editado pela última vez por TheoFerraz em Qui Jan 26, 2012 14:17, em um total de 4 vezes.
TheoFerraz
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 107
Registrado em: Qua Abr 13, 2011 19:23
Formação Escolar: GRADUAÇÃO
Área/Curso: Bacharelado em Física
Andamento: cursando

Re: Volume de uma piramide hexagonal

Mensagempor TheoFerraz » Qua Jan 25, 2012 21:08

VIX! não tinha visto que sua area era a análise! O_O essa explicação deve ser praticamente inválida pra voce... esse jeito 'pratico' é absurdamente oposto ao jeito que o pessoal da análise costuma fazer =X descuuuulpe, mas espero que ao mínimo tenha conseguido ilustrar o problema...
TheoFerraz
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 107
Registrado em: Qua Abr 13, 2011 19:23
Formação Escolar: GRADUAÇÃO
Área/Curso: Bacharelado em Física
Andamento: cursando

Re: Volume de uma piramide hexagonal

Mensagempor joserd » Qua Jan 25, 2012 21:10

Não entendi o que tem nesse trecho
está faltando alguma coisa?
o que temos então... esse volume infinitesimal que eu estou chamando de pode ser escrito em função duma altura infinitesmial, que seria a altura da fatia!!

esse R é o tamanho do lado de cada hexagono de cada fatia... é variável conforme as fatias.
joserd
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Sex Set 16, 2011 20:57
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: analise
Andamento: formado

Re: Volume de uma piramide hexagonal

Mensagempor joserd » Qua Jan 25, 2012 21:12

Não Theo vc ajudou bastante estou quase lá com sua ajuda agradeço a atenção
joserd
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Sex Set 16, 2011 20:57
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: analise
Andamento: formado

Re: Volume de uma piramide hexagonal

Mensagempor TheoFerraz » Qua Jan 25, 2012 21:17

A sim, concertei lá. "esse volume infinitesimal que estou chamando de dv..."

eu tinha usado o Latex para escrever 'dv', pode ter ocorrido algum erro.
TheoFerraz
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 107
Registrado em: Qua Abr 13, 2011 19:23
Formação Escolar: GRADUAÇÃO
Área/Curso: Bacharelado em Física
Andamento: cursando

Re: Volume de uma piramide hexagonal

Mensagempor LuizAquino » Qua Jan 25, 2012 22:20

joserd escreveu:Ola pessoal ja consegui fazer a demonstração da fórmula usando integrais para uma piramide de base quadrada, mas estou empacando na resolução de deduzir a fórmula para o volume de uma piramide de altura h e base sendo um hexágono regular de lado r. Me ajudem por favor preciso com urgencia


A figura abaixo ilustra o exercício.

figura.png
figura.png (8.32 KiB) Exibido 7139 vezes


Primeiro, calcule a área do hexágono menor em função da posição x.

Para isso, comece determinando o valor de r.

Utilizando semelhança de triângulos, você deve obter que:

r = \frac{(H-x)R}{H}

Sendo assim, a área A do hexágono menor será dada por:

A = \frac{3\sqrt{3}}{2}\left[\frac{(H-x)R}{H}\right]^2

Enxergando a área A como uma função de x, temos que:

V = \int_0^H A(x)\, dx

V = \int_0^H \frac{3\sqrt{3}}{2}\left[\frac{(H-x)R}{H}\right]^2\, dx

V = \frac{\sqrt{3}}{2}R^2H
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Volume de uma piramide hexagonal

Mensagempor joserd » Qua Jan 25, 2012 22:33

Obrigado. Agora ficou mais claro.
Por favor se puderem me ajudar no outro que enviei agradeço
joserd
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Sex Set 16, 2011 20:57
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: analise
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?