por joserd » Qua Jan 25, 2012 20:24
Ola pessoal ja consegui fazer a demonstração da fórmula usando integrais para uma piramide de base quadrada, mas estou empacando na resolução de deduzir a fórmula para o volume de uma piramide de altura h e base sendo um hexágono regular de lado r.Me ajudem por favor preciso com urgencia
-
joserd
- Usuário Ativo

-
- Mensagens: 10
- Registrado em: Sex Set 16, 2011 20:57
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: analise
- Andamento: formado
por TheoFerraz » Qua Jan 25, 2012 21:03
façamos o seguinte... pense na sua piramide posicionada com a base no eixo Oxy e a ponta indo pelo eixo Oz... tudo bem até agora?
agora vamos integrar... quero integrar minúsculas fatias de volume para obter um volume final... Logo, quero:

Le-se então: "o volume total é a soma de infinitos pequenos volumes infinitesimais"
(OBS: como pode ver, eu sou estudante de física... os matemáticos provavelmente dirão que eu estou estuprando a matemática... =X mas só estou sendo pratico)
muito simples... agora vamos definir essas tais fatias infinitesimais de volume! quero que voce imagine que estou fatiando a piramide em farias paralelas ao eixo Oxy, tudo bem?
Vou fazer uma simplificação. Pense que, já que são fatias infinitesimalmente pequenas... a figura da fatia, que seria um "tronco de piramide" é, para todos os fins praticos, um paralelepipedo! (matemáticos, respirem fundo, esse é o jeito físico de resolver problemas!)
o que temos então... esse volume infinitesimal que eu estou chamando de dv pode ser escrito em função duma altura infinitesmial, que seria a altura da fatia!!

esse R é o tamanho do lado de cada hexagono de cada fatia... é variável conforme as fatias.
perceba que conforme eu vou 'fatiando', conforme cada fatia, esse 'r' muda!
se eu conseguir um jeito de escreve-lo mudando EM FUNÇÂO DE h, eu resolvo o problema!
e é possivel! voce pode, se pensar num corte vertical da piramide, ver que

sendo R e H as medidas dadas no enunciado.
Falta só uma coisa agora... os limites de integração!
eu estou cortando as fatias conforme a altura da piramide! minhas fatias deverão variar de 0 até H... compreende? Vou cortar ao longo da altura, desde o pto 0 até ter completado toda a reta...
(admito que essa explicação pode estar meio acoxambrada, me desculpe, mas fica realmente dificil da-la sem uma lousa =X)
por fim

Eis o 'jeito físico' de fazer a matemática...
por favor, desculpe-me de qualquer acoxambramento e qualquer possivel erro =X
Caso algum matemático queira complementar com a resolução mais formal....
obrigado.
Editado pela última vez por
TheoFerraz em Qui Jan 26, 2012 14:17, em um total de 4 vezes.
-
TheoFerraz
- Colaborador Voluntário

-
- Mensagens: 107
- Registrado em: Qua Abr 13, 2011 19:23
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Bacharelado em Física
- Andamento: cursando
por TheoFerraz » Qua Jan 25, 2012 21:08
VIX! não tinha visto que sua area era a análise! O_O essa explicação deve ser praticamente inválida pra voce... esse jeito 'pratico' é absurdamente oposto ao jeito que o pessoal da análise costuma fazer =X descuuuulpe, mas espero que ao mínimo tenha conseguido ilustrar o problema...
-
TheoFerraz
- Colaborador Voluntário

-
- Mensagens: 107
- Registrado em: Qua Abr 13, 2011 19:23
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Bacharelado em Física
- Andamento: cursando
por joserd » Qua Jan 25, 2012 21:10
Não entendi o que tem nesse trecho
está faltando alguma coisa?
o que temos então... esse volume infinitesimal que eu estou chamando de pode ser escrito em função duma altura infinitesmial, que seria a altura da fatia!!
esse R é o tamanho do lado de cada hexagono de cada fatia... é variável conforme as fatias.
-
joserd
- Usuário Ativo

-
- Mensagens: 10
- Registrado em: Sex Set 16, 2011 20:57
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: analise
- Andamento: formado
por joserd » Qua Jan 25, 2012 21:12
Não Theo vc ajudou bastante estou quase lá com sua ajuda agradeço a atenção
-
joserd
- Usuário Ativo

-
- Mensagens: 10
- Registrado em: Sex Set 16, 2011 20:57
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: analise
- Andamento: formado
por TheoFerraz » Qua Jan 25, 2012 21:17
A sim, concertei lá. "esse volume infinitesimal que estou chamando de dv..."
eu tinha usado o Latex para escrever 'dv', pode ter ocorrido algum erro.
-
TheoFerraz
- Colaborador Voluntário

-
- Mensagens: 107
- Registrado em: Qua Abr 13, 2011 19:23
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Bacharelado em Física
- Andamento: cursando
por LuizAquino » Qua Jan 25, 2012 22:20
joserd escreveu:Ola pessoal ja consegui fazer a demonstração da fórmula usando integrais para uma piramide de base quadrada, mas estou empacando na resolução de deduzir a fórmula para o volume de uma piramide de altura h e base sendo um hexágono regular de lado r. Me ajudem por favor preciso com urgencia
A figura abaixo ilustra o exercício.

- figura.png (8.32 KiB) Exibido 7139 vezes
Primeiro, calcule a área do hexágono menor em função da posição
x.
Para isso, comece determinando o valor de
r.
Utilizando semelhança de triângulos, você deve obter que:

Sendo assim, a área A do hexágono menor será dada por:
![A = \frac{3\sqrt{3}}{2}\left[\frac{(H-x)R}{H}\right]^2 A = \frac{3\sqrt{3}}{2}\left[\frac{(H-x)R}{H}\right]^2](/latexrender/pictures/640a469a8e976862210315cb960e29f7.png)
Enxergando a área A como uma função de x, temos que:

![V = \int_0^H \frac{3\sqrt{3}}{2}\left[\frac{(H-x)R}{H}\right]^2\, dx V = \int_0^H \frac{3\sqrt{3}}{2}\left[\frac{(H-x)R}{H}\right]^2\, dx](/latexrender/pictures/21d8940d57a72d9a2a206c83996d56d5.png)

-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por joserd » Qua Jan 25, 2012 22:33
Obrigado. Agora ficou mais claro.
Por favor se puderem me ajudar no outro que enviei agradeço
-
joserd
- Usuário Ativo

-
- Mensagens: 10
- Registrado em: Sex Set 16, 2011 20:57
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: analise
- Andamento: formado
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- >>>>>>Volume da Pirâmide de Base Hexagonal<<<<<
por futuromilitar » Sáb Mai 21, 2016 17:29
- 1 Respostas
- 6100 Exibições
- Última mensagem por futuromilitar

Qui Mai 26, 2016 22:00
Geometria Espacial
-
- Determine a área total e o volume do prisma Hexagonal
por andersontricordiano » Qui Nov 10, 2011 15:55
- 1 Respostas
- 3242 Exibições
- Última mensagem por MarceloFantini

Qui Nov 10, 2011 19:54
Geometria
-
- Calcular o volume de uma pirâmide
por -civil- » Qua Jun 15, 2011 21:05
- 2 Respostas
- 2422 Exibições
- Última mensagem por -civil-

Sáb Jun 18, 2011 12:13
Geometria Analítica
-
- Volume do tronco da pirâmide
por erikamurizinepires12 » Qui Fev 09, 2017 16:02
- 1 Respostas
- 7912 Exibições
- Última mensagem por 314159265

Seg Fev 13, 2017 02:31
Geometria Espacial
-
- Geometria Analitica Volume da piramide
por Diego Silva » Sex Ago 02, 2013 23:39
- 1 Respostas
- 4051 Exibições
- Última mensagem por mecfael

Dom Ago 18, 2013 22:58
Geometria Analítica
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.