Ana_Rodrigues escreveu:1)
![\cos(\textrm{sen}^{-1}\, x)=\sqrt[]{1-{x}^{2}} \cos(\textrm{sen}^{-1}\, x)=\sqrt[]{1-{x}^{2}}](/latexrender/pictures/f02af85cefa241ba4977c7f25b5ee88f.png)
Você deve saber que:

Disso podemos concluir que:

(se

for um ângulo do primeiro ou do quarto quadrante).
Considere agora o ângulo

. Suponha que ele seja do primeiro ou do quarto quadrante. Temos que:

Você deve saber que

representa a função inversa do seno.
Além disso, você deve saber que se

é a função inversa de
f, então é válida a propriedade

.
Por outro lado, você também deve saber que

.
Usando essas informações, temos que:
![\cos (\textrm{sen}^{-1} x) = \sqrt{1 - \left[\textrm{sen} (\,\textrm{sen}^{-1} x)\right]^2} = \sqrt{1-x^2} \cos (\textrm{sen}^{-1} x) = \sqrt{1 - \left[\textrm{sen} (\,\textrm{sen}^{-1} x)\right]^2} = \sqrt{1-x^2}](/latexrender/pictures/ed9fac86e2c1b54be281083c16654d9c.png)
Ana_Rodrigues escreveu:2)

A ideia é parecida com a anterior.
Mas lembre-se que usando

e

podemos obter que:

(se

for um ângulo do primeiro ou do terceiro quadrante).