• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[funções inversas]

[funções inversas]

Mensagempor Ana_Rodrigues » Ter Jan 24, 2012 17:46

Eu não entendo essas transformações!

Por exemplo:

1) cos(sen{}^{-1})=\sqrt[]{1-{x}^{2}}

ou então:

2) sen(tg{}^{-1}x)=\frac{x}{\sqrt[]{1+{x}^{2}}}

Não entendo essas simplificações. Não sei como chegar aos resultados mostrados.

Peço a quem souber, que me ajude a entender!
Ana_Rodrigues
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 51
Registrado em: Seg Nov 14, 2011 09:44
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [funções inversas]

Mensagempor LuizAquino » Ter Jan 24, 2012 19:47

Ana_Rodrigues escreveu:1) \cos(\textrm{sen}^{-1}\, x)=\sqrt[]{1-{x}^{2}}


Você deve saber que:

\cos^2 \theta + \textrm{sen}^2 \,\theta = 1

Disso podemos concluir que:

\cos \theta  = \sqrt{1 - \textrm{sen}^2 \,\theta} (se \theta for um ângulo do primeiro ou do quarto quadrante).

Considere agora o ângulo \theta = \textrm{sen}^{-1} x . Suponha que ele seja do primeiro ou do quarto quadrante. Temos que:

\cos (\textrm{sen}^{-1} x)  = \sqrt{1 - \textrm{sen}^2 (\,\textrm{sen}^{-1} x)}

Você deve saber que \textrm{sen}^{-1} representa a função inversa do seno.

Além disso, você deve saber que se f^{-1} é a função inversa de f, então é válida a propriedade f\left(f^{-1}(x)\right) = x .

Por outro lado, você também deve saber que \textrm{sen}^2 \, \theta = \left(\textrm{sen} \, \theta\right)\cdot \left(\textrm{sen} \, \theta\right) = \left(\textrm{sen} \, \theta\right)^2 .

Usando essas informações, temos que:

\cos (\textrm{sen}^{-1} x)  = \sqrt{1 - \left[\textrm{sen} (\,\textrm{sen}^{-1} x)\right]^2} = \sqrt{1-x^2}

Ana_Rodrigues escreveu:2) \textrm{sen}\,(\textrm{tg}^{-1}\, x)=\frac{x}{\sqrt{1+{x}^{2}}}


A ideia é parecida com a anterior.

Mas lembre-se que usando \cos^2 \theta + \textrm{sen}^2 \,\theta = 1 e \textrm{tg}\, \theta = \frac{\textrm{sen}\, \theta}{\cos \theta} podemos obter que:

\textrm{sen}\, \theta = \frac{\textrm{tg}\,\theta}{\sqrt{1+\textrm{tg}^2\,\theta}} (se \theta for um ângulo do primeiro ou do terceiro quadrante).
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: [funções inversas]

Mensagempor Ana_Rodrigues » Ter Jan 24, 2012 22:33

Muito obrigada! :-D
Ana_Rodrigues
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 51
Registrado em: Seg Nov 14, 2011 09:44
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)