• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Resolva o sistema não-linear

Resolva o sistema não-linear

Mensagempor andersontricordiano » Seg Jan 23, 2012 19:38

Resolva o sistema não-linear :

\begin{vmatrix}
   \frac{1}{a}+ & \frac{2}{b}+&\frac{1}{c}=8  \\ 
   \frac{1}{a}+ &\frac{1}{b}+&\frac{2}{c} =7\\
\frac{2}{a}+&\frac{1}{b}+&\frac{1}{c}=9 
\end{vmatrix}
andersontricordiano
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 192
Registrado em: Sex Mar 04, 2011 23:02
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Resolva o sistema não-linear

Mensagempor Arkanus Darondra » Seg Jan 23, 2012 20:22

andersontricordiano escreveu:Resolva o sistema não-linear :

\begin{vmatrix}\frac{1}{a}+ & \frac{2}{b}+&\frac{1}{c}=8  \\ \frac{1}{a}+ &\frac{1}{b}+&\frac{2}{c} =7\\\frac{2}{a}+&\frac{1}{b}+&\frac{1}{c}=9 \end{vmatrix}

$ \left\{\begin{array}{lll}\displaystyle \frac{1}{a}+ \frac{2}{b}+\frac{1}{c}=8(L_1 - L_2)(-2L_1 + L_2) \\\displaystyle \frac{1}{a}+\frac{1}{b}+\frac{2}{c} =7 \\\displaystyle \frac{2}{a}+\frac{1}{b}+\frac{1}{c}=9\end{array}\right \Rightarrow $ \left\{\begin{array}{lll}\displaystyle \frac{1}{a}+ \frac{2}{b}+\frac{1}{c}=8 \\\displaystyle 0+\frac{1}{b}-\frac{1}{c} =1(-L_2 + L_3) \\\displaystyle 0-\frac{3}{b}-\frac{1}{c}=-7\end{array}\right \Rightarrow $ \left\{\begin{array}{lll}\displaystyle \frac{1}{a}+ \frac{2}{b}+\frac{1}{c}=8 \\\displaystyle 0+\frac{1}{b}-\frac{1}{c} =1 \\\displaystyle 0-\frac{4}{b}+0=-8\end{array}\right
Então:
b = \frac12, c = 1 e a = \frac13
Qualquer dúvida, volte aqui. :y:
Arkanus Darondra
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 187
Registrado em: Seg Dez 26, 2011 18:19
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Matrizes e Determinantes

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.