• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limites

Limites

Mensagempor Guilherme Carvalho » Dom Jan 22, 2012 22:15

Não consegui calcula esses limites usando as propriedades de limites , me ajuda ai moçada por favor

\lim_{x->9}\frac{{\chi}^{2}-81}{\sqrt[2]{\chi}-3}

\lim_{x->0}\left(\frac{1}{\chi\sqrt[2]{1+\chi}}-\frac{1}{\chi} \right)
Guilherme Carvalho
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 45
Registrado em: Qui Mar 03, 2011 12:39
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Mecatrônica
Andamento: cursando

Re: Limites

Mensagempor ant_dii » Seg Jan 23, 2012 01:46

Para o primeiro, veja que
x^2-81=(x-9)(x+9)=(\sqrt{x}-3)(\sqrt{x}+3)(x+9)

Para o segundo, veja que
\frac{1}{x\sqrt{1+x}}-\frac{1}{x}=\frac{1}{x} \left(\frac{1}{\sqrt{1+x}}-1 \right)= \frac{\frac{1}{\sqrt{1+x}}-1}{x}

que é uma indeterminação do tipo 0/0, onde você poderá aplicar a regra de L'hôpital, derivando denominador e numerador e depois calculando o limite.
Só os loucos sabem...
ant_dii
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 129
Registrado em: Qua Jun 29, 2011 19:46
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: formado

Re: Limites

Mensagempor LuizAquino » Seg Jan 23, 2012 14:54

Guilherme Carvalho escreveu:\lim_{x\to 0} \left(\frac{1}{x\sqrt{1+x}}-\frac{1}{x} \right)


ant_dii escreveu:Para o segundo, veja que
\frac{1}{x\sqrt{1+x}}-\frac{1}{x}=\frac{1}{x} \left(\frac{1}{\sqrt{1+x}}-1 \right)= \frac{\frac{1}{\sqrt{1+x}}-1}{x}

que é uma indeterminação do tipo 0/0, onde você poderá aplicar a regra de L'hôpital, derivando denominador e numerador e depois calculando o limite.


Não é necessário apelar para a Regra de L'Hospital.

Note que:

\lim_{x\to 0} \left(\frac{1}{x\sqrt{1+x}}-\frac{1}{x} \right) = \lim_{x\to 0} \frac{1 - \sqrt{1+x}}{x\sqrt{1+x}}

= \lim_{x\to 0} \frac{\left(1 - \sqrt{1+x}\right)\left(1 + \sqrt{1+x}\right)}{x\sqrt{1+x}\left(1 + \sqrt{1+x}\right)}

= \lim_{x\to 0} \frac{-x}{x\sqrt{1+x}\left(1 + \sqrt{1+x}\right)}

= \lim_{x\to 0} -\frac{1}{\sqrt{1+x}\left(1 + \sqrt{1+x}\right)}

= -\frac{1}{\sqrt{1+0}\left(1 + \sqrt{1+0}\right)} = -\frac{1}{2}
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Limites

Mensagempor ant_dii » Seg Jan 23, 2012 19:05

Ótima saída Luiz, estive pensando em um jeito pra não usar L'Hôpital, mas já tava tão saturado que não consegui ver uma coisa tão simples porem elegante...

Obrigado
Só os loucos sabem...
ant_dii
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 129
Registrado em: Qua Jun 29, 2011 19:46
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: formado

Re: Limites

Mensagempor Guilherme Carvalho » Seg Jan 23, 2012 20:16

Vlw pela ajuda LuizAquino e ant_dii, depois de ver seus raciocínios consegui fazer uma q desse certo.

\lim_{x->9}\frac{{x}^{2}-81}{\sqrt[]{x}-3}

\lim_{x->9}\frac{\left(x-9 \right)\left(x+9 \right)}{\sqrt[]{x}-3} * \frac{\sqrt[]{x}+3}{\sqrt[]{x}+3}

\lim_{x\rightarrow9}\frac{\left(x-9 \right)\left(x+9 \right)\left(\sqrt[]{x}+3 \right)}{\left(x-9 \right)}

\lim_{x\rightarrow9}\left(x+9 \right)\left(\sqrt[]{x}+3 \right)} = 108
Guilherme Carvalho
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 45
Registrado em: Qui Mar 03, 2011 12:39
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Mecatrônica
Andamento: cursando

Re: Limites

Mensagempor ant_dii » Seg Jan 23, 2012 20:35

Gostei Guilherme, você mostra que de fato aprendeu, pois até mesmo aplicou o resultado...

Valew pelo retorno
Só os loucos sabem...
ant_dii
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 129
Registrado em: Qua Jun 29, 2011 19:46
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59