• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Resolução de integral]

[Resolução de integral]

Mensagempor adomingues » Sex Jan 20, 2012 16:45

Boa tarde

Estou a tentar resolver este integral, mas não chego ao resultado certo
\int_{-inf}^{inf} \frac{x^2}{(x^2+a^2)^2} dx cujo resultado é \frac{pi}{2*a}
Recorrendo a uma tabela de integrais sei que
\int_{-inf}^{inf} \frac{1}{(x^2+a^2)} dx = \frac{\pi}{a}
No entanto não estou a conseguir usar a regra para chegar ao resultado correcto

Desde já obrigado
adomingues
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Sex Jan 20, 2012 16:34
Formação Escolar: PÓS-GRADUAÇÃO
Andamento: cursando

Re: [Resolução de integral]

Mensagempor ant_dii » Sáb Jan 21, 2012 01:57

De modo geral pode-se fazer o seguinte

\int \frac{x^2}{(x^2+a^2)^2}dx=\int \frac{x^2+a^2-a^2}{(x^2+a^2)^2}dx=\int \left(\frac{x^2+a^2}{(x^2+a^2)^2}-\frac{a^2}{(x^2+a^2)^2}\right)dx = \\ \\ =\int \left(\frac{1}{x^2+a^2}-\frac{a^2}{(x^2+a^2)^2}\right)dx=\overbrace{\int \frac{1}{x^2+a^2}dx}^{(1)}- \overbrace{\int \frac{a^2}{(x^2+a^2)^2}dx}^{(2)}

Por parcelas temos que, de (1)
\int \frac{1}{x^2+a^2}dx = \frac{1}{a}\arctan\frac{x}{a}.

E, para (2), faremos
x=a\tan u \Rightarrow dx=a\sec^2u\, du

então
(x^2+a^2)^2=(a^2\tan^2 u+a^2)^2=[a^2(\tan^2 u+1)]^2=a^4\sec^4 u

de onde
\int \frac{a^2}{(x^2+a^2)^2}dx=\int \frac{a^2}{a^4\sec^4 u} (a\sec^2u\, du)= \frac{1}{a}\int \frac{1}{\sec^2 u}du=\frac{1}{a}\int \cos^2 u du

usando
\cos^2 u=\frac{\cos 2u+1}{2}

então
\frac{1}{a}\int \cos^2 u du= \frac{1}{2a}\int (\cos 2u+1)du=\frac{\sin 2u}{4a}+\frac{u}{2a}

Logo, unindo os resultados para (1) e (2), teremos
\int \frac{1}{x^2+a^2}dx- \int \frac{a^2}{(x^2+a^2)^2}dx= \frac{1}{a}\arctan\left(\frac{x}{a}\right)-\left(\frac{\sin 2u}{4a}+\frac{u}{2a}\right)= \\ \\=\frac{1}{a}\arctan\left(\frac{x}{a}\right)-\frac{\sin u \cos u}{2a}-\frac{u}{2a}=\frac{2\arctan\left(\frac{x}{a}\right)-\sin u \cos u-u}{2a}

Como
x=a\tan u \Rightarrow u= \arctan \left(\frac{x}{a}\right)

podemos fazer
\frac{2\arctan\left(\frac{x}{a}\right)-\sin u \cos u-u}{2a}= \\ \\ =\frac{2\arctan\left(\frac{x}{a}\right)-\sin\left(\arctan \left(\frac{x}{a}\right)\right) \cos \left(\arctan \left(\frac{x}{a}\right)\right)-\arctan \left(\frac{x}{a}\right)}{2a}=\\ \\=\frac{\arctan\left(\frac{x}{a}\right)-\frac{ax}{x^2+a^2}}{2a}=\frac{1}{2a}\arctan\left(\frac{x}{a}\right)-\frac{x}{2(x^2+a^2)}

Portanto,
\int \frac{x^2}{(x^2+a^2)^2}dx=\frac{1}{2a}\arctan\left(\frac{x}{a}\right)-\frac{x}{2(x^2+a^2)}+constante.

Não entendi bem quais eram seus limites de integração, mas agora basta que você os aplique e poderá encontrar a resposta correta...
Só os loucos sabem...
ant_dii
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 129
Registrado em: Qua Jun 29, 2011 19:46
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: formado

Re: [Resolução de integral]

Mensagempor ant_dii » Sáb Jan 21, 2012 02:39

adomingues escreveu:Estou a tentar resolver este integral, mas não chego ao resultado certo
\int_{-inf}^{inf} \frac{x^2}{(x^2+a^2)^2} dx cujo resultado é \frac{pi}{2*a}
Recorrendo a uma tabela de integrais sei que
\int_{-inf}^{inf} \frac{1}{(x^2+a^2)} dx = \frac{\pi}{a}

Agora entendi os limites de integração. Na verdade você queria
\int_{-\infty}^{\infty} \frac{x^2}{(x^2+a^2)^2} dx

que, de fato, é \frac{\pi}{2a}.

Para chegar a esse resultado você terá que usar limites sobre as integrais impróprias. A minha sugestão é que você faça
\int_{-\infty}^{\infty} \frac{x^2}{(x^2+a^2)^2} dx=\int_{-\infty}^{0} \frac{x^2}{(x^2+a^2)^2} dx+\int_{0}^{\infty} \frac{x^2}{(x^2+a^2)^2} dx

Como no post anterior já coloquei a integral calculada, agora basta que você calcule as integrais sobre os limites de integração e aplique limite para chegar ao resultado...
Só os loucos sabem...
ant_dii
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 129
Registrado em: Qua Jun 29, 2011 19:46
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Simplifique a expressão com radicais duplos
Autor: Balanar - Seg Ago 09, 2010 04:01

Simplifique a expressão com radicais duplos abaixo:

\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}

Resposta:
Dica:
\sqrt[]{2} (dica : igualar a expressão a x e elevar ao quadrado os dois lados)


Assunto: Simplifique a expressão com radicais duplos
Autor: MarceloFantini - Qua Ago 11, 2010 05:46

É só fazer a dica.


Assunto: Simplifique a expressão com radicais duplos
Autor: Soprano - Sex Mar 04, 2016 09:49

Olá,

O resultado é igual a 1, certo?