• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Calcule a matriz formada pelos coeficientes abaixo

Calcule a matriz formada pelos coeficientes abaixo

Mensagempor andersontricordiano » Qua Jan 04, 2012 15:52

Seja A a matriz formada pelos coeficientes do sistema linear abaixo:

? x + y + z = ? + 2
x + ?y + z = ? + 2
x + y + ?z = ? + 2


a) Ache as raízes da equação det A=0 ( Sugestão x³-3x+2= x³-x-2x+2 e fatore)
b) Ache a solução geral para ?=-2


Respostas:

a) 1 e -2
b) S= {(\alpha,\alpha,\alpha)}

Agradeço quem resolver!
andersontricordiano
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 192
Registrado em: Sex Mar 04, 2011 23:02
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Calcule a matriz formada pelos coeficientes abaixo

Mensagempor Arkanus Darondra » Qua Jan 04, 2012 20:23

andersontricordiano escreveu:Seja A a matriz formada pelos coeficientes do sistema linear abaixo:

? x + y + z = ? + 2
x + ?y + z = ? + 2
x + y + ?z = ? + 2


a) Ache as raízes da equação det A=0 ( Sugestão x³-3x+2= x³-x-2x+2 e fatore)

A = \begin{bmatrix}{\lambda} & 1 & 1 \\ 1 & {\lambda} & 1 \\ 1 & 1 & {\lambda}\end{bmatrix} \Rightarrow DetA = {\lambda}^3 + 3{\lambda} + 2 = {\lambda}^3 - {\lambda}^2 + {\lambda}^2 - {\lambda} - 2{\lambda} + 2 \Rightarrow {\lambda}^2({\lambda} - 1) + {\lambda}({\lambda} - 1) - 2 ({\lambda} - 1) \Rightarrow ({\lambda}^2 + {\lambda} - 2) ({\lambda} - 1)

Para DetA = 0, temos que
({\lambda}^2 + {\lambda} - 2) ({\lambda} - 1) = 0
Logo, alguma das duas equações, ou ambas, devem ser 0
Para ({\lambda}^2 + {\lambda} - 2) = 0, temos {\lambda} = 1 ou {\lambda} = -2
Para ({\lambda} - 1) = 0, temos {\lambda} = 1
Logo, {\lambda} = 1 ou -2


andersontricordiano escreveu:b) Ache a solução geral para ?=-2


Uma das maneiras de resolver este item é escalonando o sistema (após substituir o valor da incógnita)
\begin{pmatrix}-2 & 1 & 1 & 0 \\ 1 & -2 & 1 & 0 \\ 1 & 1 &-2 & 0\end{pmatrix} \Rightarrow \begin{pmatrix}-2 & 1 & 1 & 0 \\ 0 & -3 & 3 & 0 \\ 0 & 0 & 0 & 0\end{pmatrix}

Como a última linha do sistema é nula, temos um SPI
Agora, basta adotar z = {\alpha} e subtituir no sistema.
Arkanus Darondra
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 187
Registrado em: Seg Dez 26, 2011 18:19
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Matrizes e Determinantes

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}