• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Pm-Es(2011)

Pm-Es(2011)

Mensagempor DanielRJ » Sex Dez 23, 2011 19:19

Uma piramide hexagonal regular possui aesta da base medindo 8 cm e a altura de 15 cm. O volume dessa piramide é de:

Resposta: 600\sqrt{3}cm^3

Bom questão fácil só quero confirmação pra saber se está anulada mesmo. :y:

V=\frac{Ab.h}{3}

Ab=6\frac{l^2\sqrt{3}}{4}

Ab=6\frac{64\sqrt{3}}{4}

Ab=96\sqrt{3}

Logo volume:




V=480\sqrt{3} cm^3
Avatar do usuário
DanielRJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 254
Registrado em: Sex Ago 20, 2010 18:19
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Pm-Es(2011)

Mensagempor fraol » Dom Dez 25, 2011 21:56

Olá Daniel,

Fiz as contas:

V = \frac{1}{3} B h ,

B = \frac{n.l.a}{2} ,

e a = R \frac{\sqrt{3}}{2} e R^2 = a^2 + l^2 .

Encontrei l = \frac{16 \sqrt{3}}{3} e fazendo as substituições cheguei aos 640 \sqrt(3) .
fraol
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 392
Registrado em: Dom Dez 11, 2011 20:08
Localização: Mogi das Cruzes-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado

Re: Pm-Es(2011)

Mensagempor DanielRJ » Dom Dez 25, 2011 22:33

A area do hexagono não é :

\frac{6l^2\sqrt{3}}{4}

sendo 8 o lado:

\frac{6*64\sqrt{3}}{4}

96\sqrt{3}

não entendi seu raciocinio
Avatar do usuário
DanielRJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 254
Registrado em: Sex Ago 20, 2010 18:19
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Pm-Es(2011)

Mensagempor fraol » Dom Dez 25, 2011 22:49

Oi,

A área do hexágono é igual a 6 vezes a área de um triângulo de base l e altura a ( l = lado do hexágono, a = aresta do hexágono ). isto é:

B = \frac{ 6 l a } {2} . No enunciado não temos o valor de l . Mas sabemos que l^2 = l^{2} / 4 + a^2 .

Daí segue o meu raciocínio. ( para obter a sua fórmula deveríamos ter a aresta igual ao lado do hexágono, mas neste caso cada um dos 6 triângulos não seriam equiláteros e etc. ).
fraol
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 392
Registrado em: Dom Dez 11, 2011 20:08
Localização: Mogi das Cruzes-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado

Re: Pm-Es(2011)

Mensagempor DanielRJ » Seg Dez 26, 2011 19:02

O enunciado fala que a aresta da base é 8 fera.
Avatar do usuário
DanielRJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 254
Registrado em: Sex Ago 20, 2010 18:19
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Pm-Es(2011)

Mensagempor fraol » Seg Dez 26, 2011 19:29

Oops. Estava considerando a aresta de cada um dos 6 triângulos da base. Considerando como aresta da base do hexágono o seu resultado está certo.
fraol
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 392
Registrado em: Dom Dez 11, 2011 20:08
Localização: Mogi das Cruzes-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado


Voltar para Geometria Espacial

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59