• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Dúvida

Dúvida

Mensagempor Victor Corsetti » Sáb Dez 10, 2011 16:49

Como resolvo essa questão?

questaomat.JPG


Fiz a área do quadrado, que da 4. A área do quarto da circunferência, que da pi. Depois denominei a área EAB em 'y'. As áreas EAD e EBC em 'x'. A área EDC em 'z'. Como o problema quer o EDC, fiz um sistema, porém não deu certo. Fiz:

z = 4 - 2x - y
x = pi - z
y = 4 - pi - x

Resolvi o sistema por substituição, mas não deu certo, no final só deu z = z...

Valeu!!
Victor Corsetti
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Sáb Dez 10, 2011 16:32
Formação Escolar: ENSINO MÉDIO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: Dúvida

Mensagempor TheoFerraz » Sáb Dez 10, 2011 17:41

É simples... eu faria por outra abordagem que iria facilitar (ou não) as coisas.

vamos pelo basico! voce precisa da area de um triangulo... a formula mais boba pra essa area é a famosa Area = \frac{Base \times Altura}{2}

a base voce já sabe. é um lado do triangulo... agora a altura fica meio complicado... mas eu tenho um jeito!

- Na figura original construa um seguimento de reta que vá de D até E.
- Chame o angulo "D" de theta. (o angulo que esse seguimento faz com a base do triangulo)
- Agora, observe bem... a altura do triangulo será a progeção ortogonal desse seguimento na direção vertical. portanto Altura = 2 sin( \theta) esse 2 corresponde ao tamanho do seguimento ED que é o raio da circunferencia!

Otimo... agora só falta descobrir o angulo theta! tente descobri-lo... eu já pensei em alguns jeitos aqui... mas tente descobri-los sosinho.

Dica, uma reta traçada do pto E até a base do triangulo perpendicularmente, cortará a base em duas partes iguais.
TheoFerraz
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 107
Registrado em: Qua Abr 13, 2011 19:23
Formação Escolar: GRADUAÇÃO
Área/Curso: Bacharelado em Física
Andamento: cursando

Re: Dúvida

Mensagempor Victor Corsetti » Dom Dez 11, 2011 00:07

ba, perdi um tempao nessa questão, não prestei atençao que era só fazer um triangulo ali, que é equilatero, com lado 2. A resposta é A, raiz de 3. pensei que era pra descobrir a area do EDC.

valeu ai!
Victor Corsetti
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Sáb Dez 10, 2011 16:32
Formação Escolar: ENSINO MÉDIO
Área/Curso: Engenharia Civil
Andamento: cursando


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59