por alerandro » Sex Dez 09, 2011 19:25
Queria saber como verifica que é ideal: a) {0,2,4} no anel Z6?
o seis é baixo do Z
eu não sei como provar isso {0, 2 , 4} tem barra em cima dos números?
Eu sei para ser um ideal
Seja A um anel comutativo. Dizemos que um subconjunto I C A , I diferente de vazio, é um ideal em A se , e somente se,
1 se (para todo x,y) (x,y pertence I então x-y pertence I)
2 Se (Para todo a, x) (a pertence A e x pertence I somente ax pertence I)
-
alerandro
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Sex Dez 09, 2011 18:55
- Formação Escolar: GRADUAÇÃO
- Área/Curso: matemática
- Andamento: cursando
Voltar para Álgebra Elementar
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Primeiros Passos - Fórum AjudaMatemática.com
por admin » Seg Jul 25, 2011 03:43
- 0 Respostas
- 244124 Exibições
- Última mensagem por admin

Seg Jul 25, 2011 03:43
Informações Gerais
-
- quais os Passos para derivar essa função
por Netolucena » Seg Nov 05, 2012 20:43
- 2 Respostas
- 8346 Exibições
- Última mensagem por e8group

Seg Nov 05, 2012 21:15
Cálculo: Limites, Derivadas e Integrais
-
- [Progressões] Encontrar os primeiros termos
por GrazielaSilva » Sex Set 28, 2012 11:28
- 2 Respostas
- 9531 Exibições
- Última mensagem por Yokotoyota

Qui Fev 04, 2016 03:09
Progressões
-
- [Série de Taylor] 4 primeiros termos
por Crist » Sáb Mar 09, 2013 17:52
- 2 Respostas
- 9715 Exibições
- Última mensagem por Crist

Dom Mar 10, 2013 23:12
Sequências
-
- [P.A] DETERMINAR A SOMA ODS 60 PRIMEIROS TERMOS
por ramonalado » Ter Mar 12, 2013 23:35
- 3 Respostas
- 11312 Exibições
- Última mensagem por Russman

Qua Mar 13, 2013 22:46
Progressões
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.