• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Geometria Espacial - Cones - UFMG 2001

Geometria Espacial - Cones - UFMG 2001

Mensagempor felip3mg » Ter Dez 06, 2011 12:16

Pessoal, boa tarde.
Estou estudando para a segunda etapa do vestibular da ufmg, e travei numa questão de matemática da prova de 2001.
Segue a questão (creio que a figura é desnecessária para minha dúvida):

Nessas figuras, estão representados os recipientes I e II.
O recipiente I está completamente cheio de água e tem a forma de um cone circular reto, com altura H e raio da base R1.
O recipiente II está vazio e também tem a forma de um cone circular reto, com a mesma altura H , mas com raio da base igual a R2.
A água contida em I é, então, vertida em II, até que o nível da água, em ambos os recipientes, tenha a mesma altura h.
Considerando essas informações, ESCREVA essa altura h em função de H, R1 e R2.

A apostila da Editora Bernoulli traz a seguinte resposta h= H\sqrt[3]{\frac{{R1}^{2}}{{R1}^{2}+{R2}^{2}}}

Tentei realizar a questão por meio de semelhança entre os volumes de cada cone, assim como também igualar com a semelhança do outro cone pois os dois ao meu ver tem a mesma constante cúbica.
Como seria o melhor modo de resolver essa questão?
felip3mg
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Ter Dez 06, 2011 12:00
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciência da Computação
Andamento: cursando

Re: Geometria Espacial - Cones - UFMG 2001

Mensagempor joao_pimentel » Qua Dez 14, 2011 21:06

Caríssimo, não é difícil

Lembre-se que o volume do cone é V=\frac{A_b*H}{3} em que A_b é a área da base e h é a altura

A área da base, porque é um círculo é A_b=\pi.r^2

Assim, a função Volume total é V=\frac{\pi.r^2.H}{3}

V_1=\frac{\pi.{R_1}^2.H}{3}

V_2=\frac{\pi.{R_2}^2.H}{3}

Lembre-se que se o cone não está cheio tem de tirar a parte superior que falta, ou seja o cone que está acima de h

Assim a função do volume em função de h é V_2(h)=\frac{\pi.{R_2}^2.H}{3}-\frac{\pi.{R_2}^2.(H-h)}{3}

Lembre-se que o que saíu do rec. 1 é igual ao que entrou no rec. 2

Assim é só resolver esta equação em função de h

\frac{\pi.{R_2}^2.H}{3}-\frac{\pi.{R_2}^2.(H-h)}{3}=\frac{\pi.{R_1}^2.(H-h)}{3}

Acho que é isto :)

Acho que o raciocínio está correcto...

Fica bem :)
joao_pimentel
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Qua Dez 14, 2011 20:11
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Geometria Espacial

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}