por liviabgomes » Qui Dez 01, 2011 14:59

- anexo com a conta
podem me ajudar? tenho que fazer pela transformada de laplace??
brigada pela atenção.
-
liviabgomes
- Usuário Ativo

-
- Mensagens: 15
- Registrado em: Seg Mai 30, 2011 16:04
- Formação Escolar: GRADUAÇÃO
- Área/Curso: matemática licenciatura
- Andamento: cursando
por LuizAquino » Dom Dez 04, 2011 12:08
liviabgomes escreveu:Resolva o seguinte problema de valor inicial


podem me ajudar? tenho que fazer pela transformada de laplace??
Você pode fazer pela Transformada de Laplace. Para isso, siga os passos abaixo.
Passo 1Aplique a Transformada de Laplace em cada equação.
![\begin{cases}
{\cal L}\left[\frac{dx}{dt}\right] = {\cal L}\left[2x - y + \textrm{sen}\,(2t)e^{2t}\right] \\
{\cal L}\left[\frac{dy}{dt}\right] = {\cal L}\left[4x + 2y + 2\cos(2t)e^{2t}\right] \\
\end{cases} \begin{cases}
{\cal L}\left[\frac{dx}{dt}\right] = {\cal L}\left[2x - y + \textrm{sen}\,(2t)e^{2t}\right] \\
{\cal L}\left[\frac{dy}{dt}\right] = {\cal L}\left[4x + 2y + 2\cos(2t)e^{2t}\right] \\
\end{cases}](/latexrender/pictures/37cae2d71e475668ee60fff69a818cfa.png)
![\begin{cases}
s{\cal L}\left[x\right] - x(0) = 2{\cal L}\left[ x\right] - {\cal L}\left[y \right] + {\cal L}\left[\textrm{sen}\,(2t)e^{2t} \right]\\
s{\cal L}\left[y\right] - y(0) = 4{\cal L}\left[ x\right] + 2{\cal L}\left[y \right] + 2{\cal L}\left[\cos(2t)e^{2t} \right] \\
\end{cases} \begin{cases}
s{\cal L}\left[x\right] - x(0) = 2{\cal L}\left[ x\right] - {\cal L}\left[y \right] + {\cal L}\left[\textrm{sen}\,(2t)e^{2t} \right]\\
s{\cal L}\left[y\right] - y(0) = 4{\cal L}\left[ x\right] + 2{\cal L}\left[y \right] + 2{\cal L}\left[\cos(2t)e^{2t} \right] \\
\end{cases}](/latexrender/pictures/097cb65d6cdf2f05a528bb576e42d59e.png)
Passo 2Resolva o sistema anterior para
![{\cal L}\left[x \right] {\cal L}\left[x \right]](/latexrender/pictures/c5dbcff8ffc04e553b59b9b812a0f831.png)
e
![{\cal L}\left[y \right] {\cal L}\left[y \right]](/latexrender/pictures/19f8e2275ea6c09a354531644c8ba5f9.png)
.
![{\cal L}\left[x\right] = -\frac{2}{(s-2)^2 + 4} + \frac{s-2}{(s-2)^2 + 4} {\cal L}\left[x\right] = -\frac{2}{(s-2)^2 + 4} + \frac{s-2}{(s-2)^2 + 4}](/latexrender/pictures/853073365d8682833b65f2a04313c089.png)
Passo 3Aplique a Transformada Inversa de Laplace na solução do sistema.

Passo 4Substitua as funções

e

no problema original para conferir a resposta.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por liviabgomes » Dom Dez 04, 2011 20:55
muito obrigada pela ajuda, foi muito válido.. eu tinha trancado na transformada, e não tinha feito ela inversa depois.. me clareou as ideias.. hahaha. Lá no final para substituir no problema original como eu faço? pego a resposta e boto no lugar de x(t) e y(t) e derivo para ver se da certo?
-
liviabgomes
- Usuário Ativo

-
- Mensagens: 15
- Registrado em: Seg Mai 30, 2011 16:04
- Formação Escolar: GRADUAÇÃO
- Área/Curso: matemática licenciatura
- Andamento: cursando
por LuizAquino » Seg Dez 05, 2011 10:15
liviabgomes escreveu:Lá no final para substituir no problema original como eu faço? pego a resposta e boto no lugar de x(t) e y(t) e derivo para ver se da certo?
Sim.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por liviabgomes » Seg Dez 05, 2011 11:36
deeeu, brigada!
-
liviabgomes
- Usuário Ativo

-
- Mensagens: 15
- Registrado em: Seg Mai 30, 2011 16:04
- Formação Escolar: GRADUAÇÃO
- Área/Curso: matemática licenciatura
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- (Calculo de logaritmo) Resolva em R a seguinte equação
por andersontricordiano » Qua Ago 03, 2011 13:39
- 1 Respostas
- 1590 Exibições
- Última mensagem por Guill

Qua Ago 03, 2011 15:17
Logaritmos
-
- [Equação diferencial] Problema de valor inicial
por Aliocha Karamazov » Qua Fev 15, 2012 23:34
- 2 Respostas
- 1655 Exibições
- Última mensagem por Aliocha Karamazov

Qui Fev 23, 2012 23:43
Cálculo: Limites, Derivadas e Integrais
-
- Equações diferenciais - problema de valor inicial
por emsbp » Qui Abr 12, 2012 18:14
- 0 Respostas
- 954 Exibições
- Última mensagem por emsbp

Qui Abr 12, 2012 18:14
Cálculo: Limites, Derivadas e Integrais
-
- Resolva, em R, a seguinte inequação
por andersontricordiano » Sex Out 28, 2011 16:06
- 4 Respostas
- 2605 Exibições
- Última mensagem por TheoFerraz

Sex Out 28, 2011 16:55
Logaritmos
-
- Resolva em R a seguinte inequação:
por andersontricordiano » Sex Out 28, 2011 19:47
- 1 Respostas
- 1394 Exibições
- Última mensagem por Aliocha Karamazov

Sex Out 28, 2011 23:11
Logaritmos
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.