• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Função Modular

Função Modular

Mensagempor Wanzinha » Sáb Dez 03, 2011 19:35

Identifique o conjunto dos pontos (x, y) tais que:
| x | + | y | = 1
então eu comecei assim:
De |x|+ |y|= 1 temos que |y|=1-|x|, mas 1-|x|> ou = 0, assim devemos ter que:
1-|x|> ou = 0
-|x|> ou = -1 (x -1)
|x|< ou = 1
Mas |x|< ou = 1 ; -1 < ou = x < ou = 1. Com isso vemos que teremos que
analisar o valor de y apenas para o caso em que -1 < ou = x < ou = 1.
será isso??
Wanzinha
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Seg Out 24, 2011 02:31
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: formado

Re: Função Modular

Mensagempor joaofonseca » Sáb Dez 03, 2011 21:13

Intuitivamente, é facíl de observar que quaisquer que sejam os valores que y e x tomem o valor absoluto devolve sempre valores positivos.Logo quais são os dois números positivos cuja soma é igual a um?
joaofonseca
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 196
Registrado em: Sáb Abr 30, 2011 12:25
Localização: Lisboa
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Função Modular

Mensagempor MarceloFantini » Sáb Dez 03, 2011 22:56

Até a parte de devolver positivos está certo, depois sua intuição te engana. Perceba que x=-1 e y=0 atende as condições, ou mesmo x = - \frac{1}{2}, y = - \frac{1}{2}, logo não são apenas números positivos admitidos. A questão tem de ser avaliada em quatro casos:

x \geq 0 e y \geq 0
x \geq 0 e y < 0
x < 0 e y \geq 0
x < 0 e y < 0
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}