• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Continuidade/Limites

Continuidade/Limites

Mensagempor joaofonseca » Sáb Dez 03, 2011 19:40

Questão.jpg


Esta é uma questão de um exame nacional de Matematica em Portugal.
Eu consegui encontrar a resposta graficamente:

questao.jpg
questao.jpg (10.67 KiB) Exibido 1998 vezes


Como se pode ver quando x \to 0,f(x) \to 2.
Mas não consegui resolver analiticamente.Não consegui resolver a parte:

\lim_{x \to {0}^{+}} log_{2}(k+x)=2

Como é posivel resolver a equação logaritmica dentro do limite?
joaofonseca
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 196
Registrado em: Sáb Abr 30, 2011 12:25
Localização: Lisboa
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Continuidade/Limites

Mensagempor LuizAquino » Sáb Dez 03, 2011 20:49

joaofonseca escreveu:Mas não consegui resolver analiticamente.Não consegui resolver a parte:
\lim_{x \to {0}^{+}} log_{2}(k+x)=2

Como é posivel resolver a equação logaritmica dentro do limite?


Supondo que k>0, você pode resolver o limite diretamente:

\lim_{x \to {0}^{+}} \log_{2}(k+x)=2

\log_{2}(k+0)=2

\log_{2} k=2

k=2^2

k=4
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Continuidade/Limites

Mensagempor joaofonseca » Sáb Dez 03, 2011 21:07

Então podemos afirmar que:

\lim_{x \to 0^+}log_{2}(k+x)=2

e

log_{2} \left[ \lim_{x \to 0^+}(k+x) \right]=2

são a mesma coisa?!?
Na segunda expressão, primeiro calcula-se o limite e depois resolve-se a equação logaritmica.

Obrigado
joaofonseca
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 196
Registrado em: Sáb Abr 30, 2011 12:25
Localização: Lisboa
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Continuidade/Limites

Mensagempor LuizAquino » Sáb Dez 03, 2011 21:27

joaofonseca escreveu:Então podemos afirmar que:

\lim_{x \to 0^+}log_{2}(k+x)=2

e

log_{2} \left[ \lim_{x \to 0^+}(k+x) \right]=2

são a mesma coisa?!?


De modo geral, é verdadeira a seguinte afirmação:

Se f é contínua em L e \lim_{x\to c} g(x) = L, então \lim_{x\to c}{f(g(x))} = f\left(\lim_{x\to c}{g(x)}\right) .
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: