por JuHs2Jow » Qua Nov 30, 2011 15:10
Das 152 pessoas vacinadas ao longo de certo dia em um Posto de Saúde, sabe-se que:
*2/5 da quantidade vacinada no período da manhã eram do sexo masculino;
*2/3 da quantidade vacinada no período da tarde eram do sexo feminino;
*o número de mulheres vacinadas pela manhã foi o dobro do número de homens vacinados á tarde.
Nessas condições, é corrto afirmar que, nesse dia, foram vacinados em tal Posto
A) 90 pessoas no período da manhã.
B) 75 no período a tarde.
C) 30 mulheres a mais que a quantidade de homens.
D) 50 mulheres no período da manhã.
E) iguais a quantidade de mulheres nos períodos da manhã e da tarde.
-
JuHs2Jow
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Qua Nov 30, 2011 14:58
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por DanielFerreira » Sex Dez 16, 2011 21:08
JuHs2Jow escreveu:Das 152 pessoas vacinadas ao longo de certo dia em um Posto de Saúde, sabe-se que:
*2/5 da quantidade vacinada no período da manhã eram do sexo masculino;
*2/3 da quantidade vacinada no período da tarde eram do sexo feminino;
*o número de mulheres vacinadas pela manhã foi o dobro do número de homens vacinados á tarde.
Nessas condições, é corrto afirmar que, nesse dia, foram vacinados em tal Posto
A) 90 pessoas no período da manhã.
B) 75 no período a tarde.
C) 30 mulheres a mais que a quantidade de homens.
D) 50 mulheres no período da manhã.
E) iguais a quantidade de mulheres nos períodos da manhã e da tarde.
Total de pessoas vacinadas: 152
manhã: x
tarde: y
então,
x + y = 152*2/5 da quantidade vacinada no período da manhã eram do sexo masculino;

homens
conclusão:

mulheres
*2/3 da quantidade vacinada no período da tarde eram do sexo feminino;

mulheres
conclusão:

homens
*o número de mulheres vacinadas pela manhã foi o dobro do número de homens vacinados á tarde.



x = 10k
y = 9k
Sabemos que: x + y = 152
Daí,
10k + 9k = 152
19k = 152
k = 8concluímos que...
x = 80
y = 72
Manhã:
homens ==> 32
mulheres => 48
Tarde:
homens: ==> 24
mulheres => 48
Espero ter ajudado!
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
Voltar para Sistemas de Equações
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.