• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Funções] Descobrir o f{f[f(x)]}

[Funções] Descobrir o f{f[f(x)]}

Mensagempor Richard Oliveira » Qua Nov 30, 2011 12:37

Olá, estou estudando funções, e em uma apostila encontrei uma questão que não sei como resolver. Segue:

Sendo f(x) = \frac{x-3}{x+1}, calculando f(f(f(x))), encontramos:

A resposta segundo o gabarito é x
Richard Oliveira
Usuário Ativo
Usuário Ativo
 
Mensagens: 20
Registrado em: Sex Nov 04, 2011 16:07
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: [Funções] Descobrir o f{f[f(x)]}

Mensagempor Neperiano » Qua Nov 30, 2011 14:28

Ola

É meio chatinho de fazer

Você tem f(x), para calcular f(f(x)) é como se fosse f(y), ou seja, você tem que substituir cada x por f(x) emcima e embaixo,
no f(f(x)) vai dar umas 4 linhas, dai tenque ver o que pode cortar e depois fazer mais uma vez a mesma coisa.

Bons estudos

Atenciosamente
Sómente os mortos conhecem o fim da guerra
"Platão"
Avatar do usuário
Neperiano
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 960
Registrado em: Seg Jun 16, 2008 17:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Produção
Andamento: cursando

Re: [Funções] Descobrir o f{f[f(x)]}

Mensagempor Richard Oliveira » Qua Nov 30, 2011 22:09

Ah sim, essa era minha dúvida, eu substituía e ficava uma fração em cima e embaixo como você disse. O que eu mais estava se perdendo era nas regras de simplificação mesmo, falta de atenção. Agradeço pela ajuda, entendi como se faz.
Richard Oliveira
Usuário Ativo
Usuário Ativo
 
Mensagens: 20
Registrado em: Sex Nov 04, 2011 16:07
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: [Funções] Descobrir o f{f[f(x)]}

Mensagempor DanielFerreira » Dom Jan 08, 2012 16:31

Richard Oliveira escreveu:Olá, estou estudando funções, e em uma apostila encontrei uma questão que não sei como resolver. Segue:

Sendo f(x) = \frac{x-3}{x+1}, calculando f(f(f(x))), encontramos:

A resposta segundo o gabarito é x


f(x) = \frac{x - 3}{x + 1}

f(f(x)) = \frac{\frac{x - 3}{x + 1} - 3}{\frac{x - 3}{x + 1} + 1} = \frac{x - 3 - 3x - 3}{x + 1} : \frac{x - 3 + x + 1}{x + 1} = \frac{- 2x - 6}{2x - 2} = \frac{- x - 3}{x - 1}

f(f(f(x))) = f(\frac{- x - 3}{x - 1}) = \frac{\frac{- x - 3}{x - 1} - 3}{\frac{- x - 3}{x - 1} + 1} = \frac{- x - 3 - 3x + 3}{x - 1} : \frac{- x - 3 + x - 1}{x - 1} = \frac{- 4x}{ - 4} = x
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.